887 resultados para Boundary Value Problems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a largely arid country with generally low relief, Australia has a remarkably large number and variety of waterfalls. Found mainly near the coast, close to where most of the population lives and near the major tourist resort areas, these landscape features have long been popular scenic attractions. As sights to see and places to enjoy a variety of recreational activities, waterfalls continue to play an important role in Australia’s tourism, even in seaside resort areas where the main attractions are sunshine, sandy beaches and surf. The aesthetic appeal of waterfalls and their value as recreational resources are recognized by the inclusion of many in national parks. Even here, demands of visitors and pressures from developers raise serious problems. This paper examines the way in which waterfalls have been developed and promoted as tourist attractions, demonstrating their importance to Australian tourism. It considers threats to the sustainable use of waterfall resources posed by power schemes and, particularly, by the tourist industry itself. Queensland’s Gold Coast is selected as a case study, and comparisons are made with other areas in which waterfalls have played important roles as tourist attractions, especially the Yorkshire coast of northeast England. The discussion draws largely on an examination of tourist literature from the nineteenth to the twenty-first century, including holiday brochures and guide books, as well as other published sources, together with field observation in various parts of the world

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.