1000 resultados para Boundary
Resumo:
The solution process for diffusion problems usually involves the time development separately from the space solution. A finite difference algorithm in time requires a sequential time development in which all previous values must be determined prior to the current value. The Stehfest Laplace transform algorithm, however, allows time solutions without the knowledge of prior values. It is of interest to be able to develop a time-domain decomposition suitable for implementation in a parallel environment. One such possibility is to use the Laplace transform to develop coarse-grained solutions which act as the initial values for a set of fine-grained solutions. The independence of the Laplace transform solutions means that we do indeed have a time-domain decomposition process. Any suitable time solver can be used for the fine-grained solution. To illustrate the technique we shall use an Euler solver in time together with the dual reciprocity boundary element method for the space solution
Resumo:
The spillway of Lake Waxahachie, Ellis County (Texas), exposes a > 17 m section of the Hutchins Member of the Austin Chalk Group, un-conformably overlain by Taylor Clay. The Austin sequence was regarded as a potential Global Stratotype Section for the base of the Campanian Stage at the 1995 Brussels meeting on Cretaceous Stage boundaries, with the last occurrence of the crinoid Marsupites testudinarius (von Schlotheim, 1820) as the potential boundary marker. An integrated study of the geochemistry, stable carbon and oxgen isotopes, nannofossils, planktonic foraminifera, inoceramid bivalves, ammonites and crinoids of this section place the last occurrence of M. testudinarius in a matrix of eighteen ancillary biostratigraphic markers, while the boundary can also be recognised on the basis of a delta C-13 excursion that can, in principle, be detected globally in marine sediments. A new forma of the crinoid Marsupites testudinarius is introduced. The Waxahachie section fulfils sufficient geological criteria as to be an excellent candidate GSSP for the base of the Campanian Stage, if problems of ownership and access to the section can be resolved.
Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic
Resumo:
Broad-scale patterns in the distribution of deep-sea pelagic species and communities are poorly known. An important question is whether biogeographic boundaries identified from surface features are important in the deep mesopelagic and bathypelagic. We present community analyses of discrete-depth samples of mesozooplankton and micronekton to full-ocean depth collected in the area where the Mid-Atlantic Ridge is crossed by the Subpolar Front. The results show that the distributional discontinuity associated with the front, which is strong near the surface, decreases with increasing depth. Both the frontal separation near the surface and the community convergence at increasing depths were clearer for mesozooplankton than for micronekton.
Resumo:
Broad-scale patterns in the distribution of deep-sea pelagic species and communities are poorly known. An important question is whether biogeographic boundaries identified from surface features are important in the deep mesopelagic and bathypelagic. We present community analyses of discrete-depth samples of mesozooplankton and micronekton to full-ocean depth collected in the area where the Mid-Atlantic Ridge is crossed by the Subpolar Front. The results show that the distributional discontinuity associated with the front, which is strong near the surface, decreases with increasing depth. Both the frontal separation near the surface and the community convergence at increasing depths were clearer for mesozooplankton than for micronekton.