938 resultados para Biological degradation of stumps


Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 5 (1888-1890)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 13 (1899-1900)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 15 (1902)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 4 (1886-1888)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 12 (1898)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies suggested that modification of the membrane contact site of vitamin K-dependent proteins may enhance the membrane affinity and function of members of this protein family. The properties of a factor VII mutant, factor VII-Q10E32, relative to wild-type factor VII (VII, containing P10K32), have been compared. Membrane affinity of VII-Q10E32 was about 20-fold higher than that of wild-type factor VII. The rate of autoactivation VII-Q10E32 with soluble tissue factor was 100-fold faster than wild-type VII and its rate of activation by factor Xa was 30 times greater than that of wild-type factor VII. When combined with soluble tissue factor and phospholipid, activated factor VII-Q10E32 displayed increased activation of factor X. Its coagulant activity was enhanced in all types of plasma and with all sources of tissue factor tested. This difference in activity (maximum 50-fold) was greatest when coagulation conditions were minimal, such as limiting levels of tissue factor and/or phospholipid. Because of its enhanced activity, factor VII-Q10E32 and its derivatives may provide important reagents for research and may be more effective in treatment of bleeding and/or clotting disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bryostatins are a unique family of emerging cancer chemotherapeutic candidates isolated from marine bryozoa. Although the biochemical basis for their therapeutic activity is not known, these macrolactones exhibit high affinities for protein kinase C (PKC) isozymes, compete for the phorbol ester binding site on PKC, and stimulate kinase activity in vitro and in vivo. Unlike the phorbol esters, they are not first-stage tumor promoters. The design, computer modeling, NMR solution structure, PKC binding, and functional assays of a unique class of synthetic bryostatin analogs are described. These analogs (7b, 7c, and 8) retain the putative recognition domain of the bryostatins but are simplified through deletions and modifications in the C4-C14 spacer domain. Computer modeling of an analog prototype (7a) indicates that it exists preferentially in two distinct conformational classes, one in close agreement with the crystal structure of bryostatin 1. The solution structure of synthetic analog 7c was determined by NMR spectroscopy and found to be very similar to the previously reported structures of bryostatins 1 and 10. Analogs 7b, 7c, and 8 bound strongly to PKC isozymes with Ki = 297, 3.4, and 8.3 nM, respectively. Control 7d, like the corresponding bryostatin derivative, exhibited weak PKC affinity, as did the derivative, 9, lacking the spacer domain. Like bryostatin, acetal 7c exhibited significant levels of in vitro growth inhibitory activity (1.8–170 ng/ml) against several human cancer cell lines, providing an important step toward the development of simplified, synthetically accessible analogs of the bryostatins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G protein-coupled receptors, which are enzymatically cleaved to expose a truncated extracellular N terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease α-thrombin, is expressed in various tissues (e.g., platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. We have discovered a series of potent peptide-mimetic antagonists of PAR-1, exemplified by RWJ-56110. Spatial relationships between important functional groups of the PAR-1 agonist peptide epitope SFLLRN were employed to design and synthesize candidate ligands with appropriate groups attached to a rigid molecular scaffold. Prototype RWJ-53052 was identified and optimized via solid-phase parallel synthesis of chemical libraries. RWJ-56110 emerged as a potent, selective PAR-1 antagonist, devoid of PAR-1 agonist and thrombin inhibitory activity. It binds to PAR-1, interferes with PAR-1 calcium mobilization and cellular function (platelet aggregation; cell proliferation), and has no effect on PAR-2, PAR-3, or PAR-4. By flow cytometry, RWJ-56110 was confirmed as a direct inhibitor of PAR-1 activation and internalization, without affecting N-terminal cleavage. At high concentrations of α-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, albeit not in human platelets; whereas, at high concentrations of SFLLRN-NH2, RWJ-56110 blocked activation responses in both cell types. Thus, thrombin activates human platelets independently of PAR-1, i.e., through PAR-4, which we confirmed by PCR analysis. Selective PAR-1 antagonists, such as RWJ-56110, should serve as useful tools to study PARs and may have therapeutic potential for treating thrombosis and restenosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding: Wellcome Trust, 070247/Z/03/A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyaromatic hydrocarbons are ubiquitous environmental chemicals that are important mutagens and carcinogens. The purpose of this study was to determine whether genes within the major histocompatibility complex (MHC) influence their biological activities. Cell-mediated immunity to dimethylbenz(a)anthracene (DMBA) was investigated in congenic strains of mice. On three different backgrounds, H-2k and H-2a haplotype mice developed significantly greater contact-hypersensitivity responses to DMBA than H-2b, H-2d, and H-2s mice. In B10.A(R1) mice, which are Kk and Id, a vigorous contact-hypersensitivity response was present, indicating that the response was governed by class I, rather than class II, MHC genes. C3H/HeN (H-2k) and C3H.SW (H-2s) strains were also compared for the development of skin tumors and the persistence of DMBA–DNA adducts. When subjected to a DMBA initiation, phorbol 12-tetradecanoate 13-acetate (TPA)-promotion skin-tumorigenesis protocol, C3H/HeN mice, (which develop cell-mediated immunity to DMBA) were found to have significantly fewer tumors than C3H.SW mice (a strain that failed to develop a cell-mediated immune response to DMBA). DMBA–DNA adducts were removed more rapidly in C3H/HeN than in C3H.SW mice. The results indicate that genes within the MHC play an important role in several of the biological activities of carcinogenic polyaromatic hydrocarbons. The observations are consistent with the hypothesis that cell-mediated immunity to chemical carcinogens serves to protect individuals by removing mutant cells before they can evolve into clinically apparent neoplasms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of Ras family proteins is modulated in vivo by the function of GTPase activating proteins, which increase their intrinsic rate of GTP hydrolysis. We have isolated cDNAs encoding a GAP for the Drosophila Rap1 GTPase. Drosophila Rapgap1 encodes an 850-amino acid protein with a central region that displays substantial sequence similarity to human RapGAP. This domain, when expressed in Escherichia coli, potently stimulates Rap1 GTPase activity in vitro. Unlike Rap1, which is ubiquitously expressed, Rapgap1 expression is highly restricted. Rapgap1 is expressed at high levels in the developing photoreceptor cells and in the optic lobe. Rapgap1 mRNA is also localized in the pole plasm in an oskar-dependent manner. Although mutations that completely abolish Rapgap1 function display no obvious phenotypic abnormalities, overexpression of Rapgap1 induces a rough eye phenotype that is exacerbated by reducing Rap1 gene dosage. Thus, Rapgap1 can function as a negative regulator of Rap1-mediated signaling in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied components of the endoplasmic reticulum (ER) proofreading and degradation system in the yeast Saccharomyces cerevisiae. Using a der3–1 mutant defective in the degradation of a mutated lumenal protein, carboxypeptidase yscY (CPY*), a gene was cloned which encodes a 64-kDa protein of the ER membrane. Der3p was found to be identical with Hrd1p, a protein identified to be necessary for degradation of HMG-CoA reductase. Der3p contains five putative transmembrane domains and a long hydrophilic C-terminal tail containing a RING-H2 finger domain which is oriented to the ER lumen. Deletion of DER3 leads to an accumulation of CPY* inside the ER due to a complete block of its degradation. In addition, a DER3 null mutant allele suppresses the temperature-dependent growth phenotype of a mutant carrying the sec61–2 allele. This is accompanied by the stabilization of the Sec61–2 mutant protein. In contrast, overproduction of Der3p is lethal in a sec61–2 strain at the permissive temperature of 25°C. A mutant Der3p lacking 114 amino acids of the lumenal tail including the RING-H2 finger domain is unable to mediate degradation of CPY* and Sec61–2p. We propose that Der3p acts prior to retrograde transport of ER membrane and lumenal proteins to the cytoplasm where they are subject to degradation via the ubiquitin-proteasome system. Interestingly, in ubc6-ubc7 double mutants, CPY* accumulates in the ER, indicating the necessity of an intact cytoplasmic proteolysis machinery for retrograde transport of CPY*. Der3p might serve as a component programming the translocon for retrograde transport of ER proteins, or it might be involved in recognition through its lumenal RING-H2 motif of proteins of the ER that are destined for degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mast cells have been implicated in various diseases that are accompanied by neovascularization. The exact mechanisms by which mast cells might mediate an angiogenic response, however, are unclear and therefore, we have investigated the possible expression of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in the human mast cell line HMC-1 and in human skin mast cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that mast cells constitutively express VEGF121, VEGF165, and VEGF189. After a prolonged stimulation of cells for 24 h with phorbol 12-myristate 13-acetate (PMA) and the ionophore A23187, an additional transcript representing VEGF206 was detectable, as could be verified by sequence analysis. These results were confirmed at the protein level by Western blot analysis. When the amounts of VEGF released under unstimulated and stimulated conditions were compared, a significant increase was detectable after stimulation of cells. Human microvascular endothelial cells (HMVEC) responded to the supernatant of unstimulated HMC-1 cells with a dose-dependent mitogenic effect, neutralizable up to 90% in the presence of a VEGF-specific monoclonal antibody. Flow cytometry and postembedding immunoelectron microscopy were used to detect VEGF in its cell-associated form. VEGF was exclusively detectable in the secretory granules of isolated human skin mast cells. These results show that both normal and leukemic human mast cells constitutively express bioactive VEGF. Furthermore, this study contributes to the understanding of the physiological role of the strongly heparin-binding VEGF isoforms, since these were found for the first time to be expressed in an activation-dependent manner in HMC-1 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In eukaryotic cells, both lysosomal and nonlysosomal pathways are involved in degradation of cytosolic proteins. The physiological condition of the cell often determines the degradation pathway of a specific protein. In this article, we show that cytosolic proteins can be taken up and degraded by isolated Saccharomyces cerevisiae vacuoles. After starvation of the cells, protein uptake increases. Uptake and degradation are temperature dependent and show biphasic kinetics. Vacuolar protein import is dependent on cytosolic heat shock proteins of the hsp70 family and on protease-sensitive component(s) on the outer surface of vacuoles. Degradation of the imported cytosolic proteins depends on a functional vacuolar ATPase. We show that the cytosolic isoform of yeast glyceraldehyde-3-phosphate dehydrogenase is degraded via this pathway. This import and degradation pathway is reminiscent of the protein transport pathway from the cytosol to lysosomes of mammalian cells.