831 resultados para Biodegradable
Resumo:
The purpose of this study was to evaluate the effect of cyclosporine (CyA)-cyclodextrin (CD) complex incorporated within PLGA inicrospheres on microsphere characteristics, with particular emphasis on drug release kinetics. For this purpose, microspheres encapsulated with CyA and those loaded by CyA-CD complex were prepared by solvent evaporation and multiple emulsification solvent evaporation methods, respectively. Morphology, size, encapsulation efficiency and drug release pattern from microspheres were evaluated. Also, physicochemical properties of drug inside microspheres were characterized by differential scanning calorimetry (DSC) and infrared spectroscopy (IR) studies. Scanning electron microscopy (SEM) studies showed that microspheres encapsulated with CyA had islands on the microsphere surface but the islands were not seen on the surface of microspheres loaded by complex. Size range varied from 1 to 25 mu m for CyA encapsulated microspheres and 1 to 50 mu m for complex loaded microspheres. The release of CyA was biphasic with an initial more rapid release phase followed by a slower phase but drug release was twice as fast for complex loaded microspheres. IR studies did not indicate any chemical interaction between the components of microspheres and DSC thermograms revealed that CyA was present either in its amorphous state in microspheres or the presence of CyA as an inclusion complex within microspheres loaded by complex. In conclusion, using CyA as an inclusion complex with CD within microspheres can affect microsphere characteristics and drug release and it is possible to modify microsphere properties like drug release by incorporating CDs as complexing agents.
Resumo:
Adipose tissue forms when basement membrane extract ( Matrigel (TM)) and fibroblast growth factor-2 (FGF-2) are added to our mouse tissue engineering chamber model. A mouse tumor extract, Matrigel is unsuitable for human clinical application, and finding an alternative to Matrigel is essential. In this study we generated adipose tissue in the chamber model without using Matrigel by controlled release of FGF-2 in a type I collagen matrix. FGF-2 was impregnated into biodegradable gelatin microspheres for its slow release. The chambers were filled with these microspheres suspended in 60 mu L collagen gel. Injection of collagen containing free FGF-2 or collagen containing gelatin microspheres with buffer alone served as controls. When chambers were harvested 6 weeks after implantation, the volume and weight of the tissue obtained were higher in the group that received collagen and FGF-2 impregnated microspheres than in controls. Histologic analysis of tissue constructs showed the formation of de novo adipose tissue accompanied by angiogenesis. In contrast, control groups did not show extensive adipose tissue formation. In conclusion, this study has shown that de novo formation of adipose tissue can be achieved through controlled release of FGF-2 in collagen type I in the absence of Matrigel.
Resumo:
Biodegradable poly(dl-lactide-co-glycolide) microspheres were prepared using a modified double emulsion solvent evaporation method for the delivery of the subunit tuberculosis vaccine (Ag85B-ESAT-6), a fusion protein of the immunodominant antigens 6-kDa early secretory antigenic target (ESAT-6) and antigen 85B (Ag85B). Addition of the cationic lipid dimethyl dioctadecylammonium bromide (DDA) and the immunostimulatory trehalose 6,6'-dibehenate (TDB), either separately or in combination, was investigated for the effect on particle size and distribution, antigen entrapment efficiency, in vitro release profiles and in vivo performance. Optimised formulation parameters yielded microspheres within the desired sub-10 mu m range (1.50 +/- 0.13 mu m), whilst exhibiting a high antigen entrapment efficiency (95 +/- 1.2%) and prolonged release profiles. Although the microsphere formulations induced a cell-mediated immune response and raised specific antibodies after immunisation, this was inferior to the levels achieved with liposomes composed of the same adjuvants (DDA-TDB), demonstrating that liposomes are more effective vaccine delivery systems compared with microspheres.
Resumo:
Designing degradable hydrogels is complicated by the structural and temporal complexities of the gel and evolving tissue. A major challenge is to create scaffolds with sufficient mechanical properties to restore initial function while simultaneously controlling temporal changes in the gel structure to facilitate tissue formation. Poly(ethylene glycol) was used in this work, to form biodegradable poly(ethylene glycol)-based hydrogels with hydrolyzable poly-l-lactide segments in the backbone. Non-degradable poly(ethylene glycol) was also introduced in the formulation to obtain control of the degradation profile that encompasses cell growth and new tissue formation. The dependence on polymer composition was observed by higher degradation profiles and decreased mechanical properties as the content of degradable segments was increased in the formulation. Based on in vitro tests, no toxicity of extracts or biomaterial in direct contact with human adipose tissue stem cells was observed, and the ultraviolet light treatment did not affect the proliferation capacity of the cells.
Resumo:
AIMS To demonstrate the potential use of in vitro poly(lactic-co-glycolic acid) (PLGA) microparticles in comparison with triamcinolone suspension to aid visualisation of vitreous during anterior and posterior vitrectomy. METHODS PLGA microparticles (diameter 10-60 microm) were fabricated using single and/or double emulsion technique(s) and used untreated or following the surface adsorption of a protein (transglutaminase). Particle size, shape, morphology and surface topography were assessed using scanning electron microscopy (SEM) and compared with a standard triamcinolone suspension. The efficacy of these microparticles to enhance visualisation of vitreous against the triamcinolone suspension was assessed using an in vitro set-up exploiting porcine vitreous. RESULTS Unmodified PLGA microparticles failed to adequately adhere to porcine vitreous and were readily washed out by irrigation. In contrast, modified transglutaminase-coated PLGA microparticles demonstrated a significant improvement in adhesiveness and were comparable to a triamcinolone suspension in their ability to enhance the visualisation of vitreous. This adhesive behaviour also demonstrated selectivity by not binding to the corneal endothelium. CONCLUSION The use of transglutaminase-modified biodegradable PLGA microparticles represents a novel method of visualising vitreous and aiding vitrectomy. This method may provide a distinct alternative for the visualisation of vitreous whilst eliminating the pharmacological effects of triamcinolone acetonide suspension.
Resumo:
Cell adhesion peptide regulates various cellular functions like proliferation, attachment, and spreading. The cellular response to laminin peptide (PPFLMLLKGSTR), a motif of laminin-5 alpha3 chain, tethered to type I collagen, crosslinked using microbial transglutaminase (mTGase) was investigated. mTGase is an enzyme that initiates crosslinking by reacting with the glutamine and lysine residues on the collagen fibers stabilizing the molecular structure. In this study that tethering of the laminin peptide in a mTGase crosslinked collagen scaffold enhanced cell proliferation and attachment. Laminin peptide tethered crosslinked scaffold showed unaltered cell morphology of 3T3 fibroblasts when compared with collagen and crosslinked scaffold. The triple helical structure of collagen remained unaltered by the addition of laminin peptide. In addition a dose-dependent affinity of the laminin peptide towards collagen was seen. The degree of crosslinking was measured by amino acid analysis, differential scanning calorimeter and fourier transform infrared spectroscopy. Increased crosslinking was observed in mTGase crosslinked group. mTGase crosslinking showed higher shrinkage temperature. There was alteration in the fibrillar architecture due to the crosslinking activity of mTGase. Hence, the use of enzyme-mediated linking shows promise in tethering cell adhesive peptides through biodegradable scaffolds.
Resumo:
The Stӧber process is commonly used for synthesising spherical silica particles. This article reports the first comprehensive study of how the process variables can be used to obtain monodispersed particles of specific size. The modal particle size could be selected within in the range 20 – 500 nm. There is great therapeutic potential for bioactive glass nanoparticles, as they can be internalised within cells and perform sustained delivery of active ions. Biodegradable bioactive glass nanoparticles are also used in nanocomposites. Modification of the Stӧber process so that the particles can contain cations such as calcium, while maintaining monodispersity, is desirable. Here, while calcium incorporation is achieved, with a homogenous distribution, careful characterisation shows that much of the calcium is not incorporated. A maximum of 10 mol% CaO can be achieved and previous reports are likely to have overestimated the amount of calcium incorporated.
Resumo:
The objective of the work described was to identify and synthesize a range of biodegradable hypercoiling or hydrophobically associating polymers to mimic natural apoproteins, such as those found in lung surfactant or plasma apolipoproteins. Stirred interfacial polymerization was used to synthesize potentially biodegradable aromatic polyamides (Mw of 12,000-26,000) based on L-Iysine, L-Iysine ethyl ester, L-ornithine and DL-diaminopropionic acid, by reaction with isophthaloyl chloride. A similar technique was used to synthesize aliphatic polyamides based on L-Iysine ethyl ester and either adipoyl chloride or glutaryl chloride resulting in the synthesis of poly(lysine ethyl ester adipamide) [PLETESA] or poly(lysine ethyl ester glutaramide) (Mw of 126,000 and 26,000, respectively). PLETESA was found to be soluble in both polar and non-polar solvents and the hydrophobic/hydrophilic balance could be modified by partial saponification (66-75%) of the ethyl ester side chains. Surface or interfacial tension/pH profiles were used to assess the conformation of both the poly(isophthalamides) and partially saponified PLETESA in aqueous solution. The results demonstrated that a loss of charge from the polymer was accompanied by an initial fall in surface activity, followed by a rise in activity, and ultimately, by polymer precipitation. These observations were explained by a collapse of the polymer chains into non-surface active intramolecular coils, followed by a transition to an amphipathic conformation, and finally to a collapsed hydrophobe. 2-Dimensional NMR analysis of polymer conformation in polar and non-polar solvents revealed intramolecular associations between the hydrophobic groups within partially saponified PLETESA. Unsaponified PLETESA appeared to form a coiled structure in polar solvents where the ethyl ester side chains were contained within the polymer coil. The implications of the secondary structure of PLETESA and potential biomedical applications are discussed.
Resumo:
This thesis is primarily concerned with the synthesis and polymerization of 5-methyl-1;3, 2-dioxathiolan-4-one-2-oxide (lactic acid anhydrosulphite (LAAS)) using anionic initiators under various conditions. Poly(lactic acid) is a biodegradable polymer which finds many uses in biomedical applications such as drug-delivery and wound-support systems. For such applications it is desirable to produce polymers having predictable molecular weight distributions and crystallinity, The use of anionic initiators offers a potential route to the creation of living polymers. The synthesis of LAAS was achieved by means of an established route though the procedure was modified to some extent and a new method of purification of the monomer using copper oxides was introduced, Chromatographic purification methods were also examined but found to be ineffective. An unusual impurity was discovered in some syntheses and this was identified by means of 1H and 13C NMR, elemental analysis and GC-MS. Since poly-α-esters having hydroxyl-bearing substituents might be expected to have high equilibrium water contents and hence low surface tension characteristics which might aid bio-compatibility, synthesis of gluconic acid anhydrosulphite was also attempted and the product characterised by 1H and 13C NMR. The kinetics of the decomposition of lactic acid anhydrosulphite by lithium tert-butoxide in nitrobenzene has been examined by means of gas evolution measurements. The kinetics of the reaction with potassium tert-butoxide (and also sec-butyl lithium) in tetrahydrofuran has been studied using calorimetric techniques. LAAS was block co-polymerized with styrene and also with 1,3-butadiene in tetrahydrofuran (in the latter case a statistical co-polymer was also produced).
Resumo:
Poly(β-hydroxybutyrate), (PHB), is a biologically produced, biodegradable thennoplastic with commercial potential. In this work the qualitative and quantitative investigations of the structure and degradation of a previously unstudied, novel, fibrous form of PHB, were completed. This gel-spun PHB fibrous matrix, PHB(FM), which has a similar appearance to cotton wool, possesses a relatively complex structure which combines a large volume with a low mass and has potential for use as a wound scaffolding device. As a result of the intrinsic problems presented by this novel structure, a new experimental procedure was developed to analyze the degradation of the PHB to its monomer hydroxybutyric acid, (HBA). This procedure was used in an accelerated degradation model which accurately monitored the degradation of the undegraded and degraded fractions of a fibrous matrix and the degradation of its PHB component. The in vitro degradation mechanism was also monitored using phase contrast and scanning electron microscopy, differential scanning calorimetry, fibre diameter distributions and Fourier infra-red photoacoustic spectroscopy. The accelerated degradation model was used to predict the degradation of the samples in the physiological model and this provided a clearer picture as to the samples potential biodegradation as medical implantation devices. The degradation of the matrices was characterized by an initial penetration of the degradative medium and weakening of the fibre integrity due to cleavage of the ester linkages, this then led to the physical collapse of the fibres which increased the surface area to volume ratio of the sample and facilitated its degradation. Degradation in the later stages was reduced due to the experimental kinetics, compaction and degradation resistant material, most probably the highly crystalline regions of the PHB. The in vitro degradation of the PHB(FM) was influenced by blending with various polysaccharides, copolymerizing with poly(~-hydroxyvalerate), (PHV), and changes to the manufacturing process. The degradation was also detennined to be faster than that of conventional melt processed PHB based samples. It was concluded that the material factors such as processing, sample size and shape affected the degradation of PHB based samples with the major factor of sample surface area to volume ratio being of paramount importance in determining the degradation of a sample.
Resumo:
The research described in this thesis explored the synthesis tlnd characteristltion of biocompatible and biodegradable polymers of lactide through non-toxic titanium alkoxide nitiators. The research objectives focused on the preparation of polylactides in both solvent and solventless media, to produce materials with a wide range of molecular weights. The polylactides were fully characterised using gel permeation chromatography and 1H and 13C NMR spectroscopy. NMR spectroscopy was carried out in the study the reaction mechanisms. Kinetic studies of the ring opening polymerisation of lactide with titanium alkoxide initiators were also conducted using NMR spectroscopy. The objectives of this research were also focused on the enhancement of the flexibility of the polymer chains by synthesising random and block copolymers of lactide and ε-caprolactone using Ti(0-i-Pr)4 as an initiator, This work involved extensive characterisalion of the synthesised copolymers using gel permeation chromatography and 1H and 13C NMR spectroscopic analysis. Kinetic studies of the ring opening polymerisation of ε-caplrolactone and of the copolymerisation of lactide and ε-caprolactone with Ti(O-i-Pr)4 as an initiator were also carried out. The last section of this work involved the synthesis of block and star-shaped copolymers of lactide and poly(ethylene glycol) [PEG]. The preparation of lactide/PEG block copolymers was carried out by ring opening polymerisation of L-Iactide using Ti(O-i-Pr)4 as an initiator and hydroxyl-terminated PEG's with different numbers of hydroxyl groups as co-initiators both in solution and solventless media. These all-in-one polymersations yielded the synthesis of both lactide homopolymer and lactide/PEG block copolymer. In order to selectively synthesise copolymers of lactide and PEG, the experiment was carried out in two steps. The first step consisted of the synthesis of a titanium macro-initiator by exchanging the iso-propoxide ligands by PEG with different numbers of hydroxyl groups. The second step involved the ring opening polymerisation of lactide using the titanium macrocatalyst that was prepared as an initiator. The polymerisations were carried out in a solventless media. The synthesis of lactide/PEG copolymers using polyethylene glycol with amino terminal groups was also discussed. Extensive characterisation of the lactide block copolymers and macroinitiators was carried out using techniques such as, gel permeation chromatography (GPC), NMR spectroscopy and differential scanning calorimeter (DeS).
Resumo:
The aim of this research was to formulate a novel biodegradable, biocompatible cationic microparticle vector for the delivery of DNA vaccines. The work builds upon previous research by Singh et al which described the adsorption of DNA to the surface of poly (D,L-lactide-co-glycolide) (PLG) microparticles stabilised with the surfactant cetyltrimethyl ammonium bromide (CT AB). This work demonstrated the induction of antibody and cellular immune responses to HIV proteins encoded on plasmid DNA adsorbed to the particle surface in mice, guinea pigs and non-human primates (Singh et aI, 2000; O'Hagan et aI, 2001). However, the use of surfactants in microparticle formulations for human vaccination is undesirable due to long term safety issues. Therefore, the present research aim was to develop an adsorbed DNA vaccine with enhanced potency and increased safety compared to CTAB stabilised PLG microparticles (PLG/CTAB) by replacement of the surfactant CTAB with an alternative cationic agent. The cationic polymers chitosan and poly (N- vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfate quaternary (PVP-PDAEMA) were investigated as alternative stabilisers to CTAB. From a variety of initial formulations, the most promising vector(s) for DNA vaccination were selected based on physicochemical data (chapter 3) and in vitro DNA loading and release characteristics (chapter 4). The chosen formulation(s) were analysed in greater depth (chapters 3 and 4), and gene expression was assessed by in vitro cell transfection studies using 293T kidney epithelial and C2C12 myoblast non-phagocytic cell lines (chapter 5). The cytotoxicity of the microparticles and their constituents were also evaluated in vitro (chapter 5). Stability and suitability of the formulation(s) for commercial production were assessed by cryopreparation and lyophilisation studies (chapters 3 and 4). Gene expression levels in cells of the immune response were evaluated by microparticle transfection of the dendritic cell (DC) line 2.4 and primary bone marrow derived DCs (chapter 6). In vivo, mice were injected i.m. with the formulations deemed most promising on the basis of in vitro studies and humoral and cellular immune responses were evaluated (chapter 6).
Resumo:
Glioblastoma Multiforme (GBM) is a highly malignant form of brain cancer for which there is currently no effective cure. Consequently, developing new therapies and elucidating effective targets is crucial for this fatal disease. In recent years, DNA enzymes, deoxyribonucleic acid molecules with enzymatic activity, have emerged. In the same manner as ribozymes, DNA enzymes are able to effect cleavage of RNA in a sequence-specific manner, and operate with catalytic efficiency. In this study, two DNA enzymes were designed to target the template region of human telomerase RNA (hTR), utilising the 10-23 and 8-17 catalytic motifs elucidated by Santoro and Joyce (1997). Telomerase is an RNA-dependent DNA polymerase, which stabilises telomere lengths by adding hexameric repeats (TTAGGG in humans) to chromosome termini, thus preventing the telomere shortening that usually occurs during mitotic cell division. Telomerase activity, whilst absent in normal somatic tissues, is present in almost 90% of all tumours. Thus, there is speculation that telomerase may be the much sought universal target for therapeutic intervention in cancer. In vitro cleavage assays showed both DNA enzymes to be catalytically competent. Unmodified phosphodiester (PO) backbone DNA enzymes were rapidly degraded in the presence of serum, with a half-life of 10 minutes. The common approach of introducing phosphorothioate (PS) linkages was used in an effort to overcome this instability. As a result of concurrent activity and stability studies on the DNA enzymes with various numbers of PS linkages, the DNA enzymes with a PO core and PS arms were chosen for use in further cell work. The cleavage activity of both was shown to be specific and affected by temperature, pH, MgCI2 concentration and enzyme concentration. Both DNA enzyme motifs reduced telomerase activity in cell lysates, as assessed by the telomerase repeat amplification protocol (TRAP) with an IC50 of 100nM. DNA enzymes being polyanionic molecules do not readily cross biological barriers. Cellular association of naked DNA enzyme was inefficient at less than 2%. Cellular delivery of the DNA enzymes was effectively improved using commercial cationic lipid formulations. However, the lipid-mediated delivery of DNA enzymes to U87-MG cells over a 4-hour period did not significantly inhibit cell proliferation compared to controls. This is possibly due to an expected lag period between the inhibition of telomere maintenance and cell death. Therefore, biodegradable polymer microspheres were investigated as a potential delivery option for prolonged and sustained delivery. In vitro release profiles showed that after an initial burst, sustained release of DNA enzymes was observed over 35 days. Finally, the efficacy and specificity of the DNA enzymes were demonstrated in a luciferase based reporter assay. Specific inhibition of luciferase expression was displayed at 10nM. Thus DNA enzymes have potential against endogenous cellular targets.
Resumo:
In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.
Resumo:
m-Azidopyrimethamine ethanesulphonate salt (MZPES) is a new potent dihydrofolate reductase inhibitor designed to be both lipophilic and rapidly biodegradable. The drug is active against some methotrexate-refractory cell lines and against a broad spectrum of malignant cells in murine models. The pharmacokinetics of the drug were evaluated in the mouse, rat and man. A specific analytical method was developed to allow determination of MZP (the free base of MZPES) and its putative metabolite m-amino-pyrimethamine (MAP) in plasma, urine, faeces and tissues. Analytical methodology involved solvent extraction followed by reversed-phase ion-pair high pressure liquid chromatography. Mice were dosed at 10 and 20 mg/kg IP and 10 mg/kg PO. Absorption was rapid from both sites with a mean plasma elimination half-life of 4 hours. Oral bio-availability, relative to intraperitoneal injection, exceeded 95% in the mouse. MZP attained concentrations in mouse tissues 4 to 14 fold greater than those found in plasma and penetrated the blood-brain barrier effectively. Following intraperitoneal administration of MZP to the rat, the recovery of MZP and MAP in urine and faeces was 14% during 72 hours. MZPES was formulated for a phase I clinical evaluation as a 1% w/v aqueous solution and was administered by IV infusion in 5% dextrose over 1 hour. The drug obeyed 2-compartment kinetics with a central compartment volume of 27 litres and a volume of distribution of 118 litres. Plasma distribution and elimination half-lives were 0.27 and 34 hours respectively and plasma clearance was 7.5 L/hr. MZP was removed from plasma more rapidly than the prototypic lipophilic dihydrofolate reductase inhibitor metoprine (half-life 216 hours). The pharmacokinetics of MZPES showed no dose-dependency over the dose-range studied (27 to 460 mg/m2). The dose-limiting toxicity was nausea and vomiting. The short half-life of the drug should allow easy assessment of the optimum dose and schedule of administration.