875 resultados para Biased selection
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Resumo:
Two-component systems capable of self-assembling into soft gel-phase materials are of considerable interest due to their tunability and versatility. This paper investigates two-component gels based on a combination of a L-lysine-based dendron and a rigid diamine spacer (1,4-diaminobenzene or 1,4-diaminocyclohexane). The networked gelator was investigated using thermal measurements, circular dichroism, NMR spectroscopy and small angle neutron scattering (SANS) giving insight into the macroscopic properties, nanostructure and molecular-scale organisation. Surprisingly, all of these techniques confirmed that irrespective of the molar ratio of the components employed, the "solid-like" gel network always consisted of a 1:1 mixture of dendron/diamine. Additionally, the gel network was able to tolerate a significant excess of diamine in the "liquid-like" phase before being disrupted. In the light of this observation, we investigated the ability of the gel network structure to evolve from mixtures of different aromatic diamines present in excess. We found that these two-component gels assembled in a component-selective manner, with the dendron preferentially recognising 1,4-diaminobenzene (>70%). when similar competitor diamines (1,2- and 1,3-diaminobenzene) are present. Furthermore, NMR relaxation measurements demonstrated that the gel based oil 1,4-diaminobenzene was better able to form a selective ternary complex with pyrene than the gel based oil 1,4-diaminocyclohexane, indicative of controlled and selective pi-pi interactions within a three-component assembly. As such, the results ill this paper demonstrate how component selection processes in two-component gel systems call control hierarchical self-assembly.
Resumo:
Supplier selection has a great impact on supply chain management. The quality of supplier selection also affects profitability of organisations which work in the supply chain. As suppliers can provide variety of services and customers demand higher quality of service provision, the organisation is facing challenges for making the right choice of supplier for the right needs. The existing methods for supplier selection, such as data envelopment analysis (DEA) and analytical hierarchy process (AHP) can automatically perform selection of competitive suppliers and further decide winning supplier(s). However, these methods are not capable of determining the right selection criteria which should be derived from the business strategy. An ontology model described in this paper integrates the strengths of DEA and AHP with new mechanisms which ensure the right supplier to be selected by the right criteria for the right customer's needs.
Resumo:
In this paper, we present a feature selection approach based on Gabor wavelet feature and boosting for face verification. By convolution with a group of Gabor wavelets, the original images are transformed into vectors of Gabor wavelet features. Then for individual person, a small set of significant features are selected by the boosting algorithm from a large set of Gabor wavelet features. The experiment results have shown that the approach successfully selects meaningful and explainable features for face verification. The experiments also suggest that for the common characteristics such as eyes, noses, mouths may not be as important as some unique characteristic when training set is small. When training set is large, the unique characteristics and the common characteristics are both important.
Resumo:
An orthogonal forward selection (OFS) algorithm based on the leave-one-out (LOO) criterion is proposed for the construction of radial basis function (RBF) networks with tunable nodes. This OFS-LOO algorithm is computationally efficient and is capable of identifying parsimonious RBF networks that generalise well. Moreover, the proposed algorithm is fully automatic and the user does not need to specify a termination criterion for the construction process.
Resumo:
An orthogonal forward selection (OFS) algorithm based on leave-one-out (LOO) criteria is proposed for the construction of radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines an RBF node, namely, its center vector and diagonal covariance matrix, by minimizing the LOO statistics. For regression application, the LOO criterion is chosen to be the LOO mean-square error, while the LOO misclassification rate is adopted in two-class classification application. This OFS-LOO algorithm is computationally efficient, and it is capable of constructing parsimonious RBF networks that generalize well. Moreover, the proposed algorithm is fully automatic, and the user does not need to specify a termination criterion for the construction process. The effectiveness of the proposed RBF network construction procedure is demonstrated using examples taken from both regression and classification applications.
Resumo:
A greedy technique is proposed to construct parsimonious kernel classifiers using the orthogonal forward selection method and boosting based on Fisher ratio for class separability measure. Unlike most kernel classification methods, which restrict kernel means to the training input data and use a fixed common variance for all the kernel terms, the proposed technique can tune both the mean vector and diagonal covariance matrix of individual kernel by incrementally maximizing Fisher ratio for class separability measure. An efficient weighted optimization method is developed based on boosting to append kernels one by one in an orthogonal forward selection procedure. Experimental results obtained using this construction technique demonstrate that it offers a viable alternative to the existing state-of-the-art kernel modeling methods for constructing sparse Gaussian radial basis function network classifiers. that generalize well.