923 resultados para Bengal, Bay of
Resumo:
Compositions of different types of ocean suspended matter are under consideration.
Resumo:
Seismic velocities have been measured at confining pressures of 100 MPa and 600 MPa for sheeted dike samples recovered during Ocean Drilling Program Legs 137 and 140. The compressional- and shear-wave velocities show an increase with depth at Hole 504B, which is in sharp contrast to the atmospheric pressure velocity measurements performed as part of the shipboard analyses. Rocks exposed to different types of alteration and fracture patterns show distinct changes in their physical properties. The seismic reflectors observed on the vertical seismic profile (VSP) experiment performed during Leg 111 may have been caused by low velocity zones resulting from alteration. The amount of fracturing and hydrothermal alteration in several zones also may have contributed to the acoustic impedance contrast necessary to produce the E5 reflector. Poisson's ratios calculated from laboratory velocity measurements show several low values at depths ranging from 1600 mbsf to 2000 mbsf, which tends to follow similar trends obtained from previous oceanic refraction experiments. A comparison of physical properties between samples recovered from Hole 504B and ophiolite studies in the Bay of Islands and Oman shows a good correlation with the Bay of Islands but significant differences from the measurements performed in the Oman complex.
Resumo:
Species composition, phytoplankton abundance, and relative yield of variable fluorescence (F_v/F_m) were determined in the mesotrophic Nhatrang Bay in October-November 2004. Species diversity (250 taxonomic units) and heterogeneity of the phytoplankton structure were high. With respect to number of species and their abundance, diatoms prevailed. In selected parts of the bay, dinoflagellates dominated. Average biomass in the water column under 1 m**2 (Bt) varied from 2.3 to 64.4 mg C/m**3 (av. 31.0 mg C/m**3). Bt values were the lowest at stations nearest to the river mouth. Seaward, Bt increased. Bt values increased with depth at some stations and decreased at others. In surface layers biomass was lower than that in the underlying waters. F_v/F_m values ranged from 0.10 to 0.64 (av. 0.49). The lowest F_v/F_m values were observed in the area close to the seaport. Over greater part of the bay, F_v/F_m values were higher than 0.47. Such values are indicative of relatively high potential of photosynthetic activity of phytoplankton. Abundance and species diversity were higher than those in the dry season (March-April).
Resumo:
The North Atlantic at present is ventilated by overflow of the Denmark Strait, Iceland-Faeroe Ridge, Faeroe Bank Channel, and Wyville-Thompson Ridge. The evolution of Cenozoic abyssal circulation of this region was related to tectonic opening and subsidence of these sills. We used d13C records of the benthic foraminifer Cibicidoides to decipher the timing of tectonically controlled changes in bottom-water circulation in the eastern basins (Biscay and Iberian) of the northern North Atlantic. Records from Site 608 (Kings Trough, northeastern North Atlantic) show that from about 24 to 15 Ma (early to early middle Miocene), d13C values in the Kings Trough area were depleted relative to western North Atlantic values and were more similar to Pacific d13C values. This reflects less ventilation of the Kings Trough region as compared to the well-oxygenated western North Atlantic. Comparison of Oligocene d13C records from Site 119 (Bay of Biscay) with western North Atlantic records suggests that the eastern basin was also relatively isolated prior to 24 Ma. At about 15 Ma, d13C values at Site 608 attained values similar to the western North Atlantic, indicating increased eastern basin ventilation in the middle Miocene. This increased advection into the eastern basin predated a major d18O increase which occurred at about 14.6 Ma. Subsidence estimates of the Greenland-Scotland Ridge indicate that the deepening of the Iceland-Faeroe Ridge was coincident with the marked change in eastern basin deep-water ventilation.
Resumo:
Paleomagnetic results from sediments acquired from the continental margin at DSDP Sites 548, 549, 550, and 551 are described. Where possible, the results were used to construct a polarity reversal stratigraphy for the sections sampled, thus enabling the biostratigraphic dating of the sediments to be refined. Several sections in this study were found to be suitable for magnetostratigraphic work, in particular the upper Paleocene to middle Eocene sediments from Site 549, which contained rich faunal assemblages. These sediments are underlain by a thick sequence of Cretaceous sediments that formed during the Long Cretaceous normal polarity interval. Sediments that formed during the later part of this magnetically quiet interval were also recovered at Site 550. Three short reverse polarity intervals were also recovered at this site; they lie directly over basement and are thought to represent a mixed-polarity interval of late Albian age. They may therefore provide important evidence concerning the age of the earliest sediments at this site. In addition, measurements of the magnetic susceptibility and intensity of remanent magnetism proved to be of interest. A significant decrease in the susceptibility and intensity values close to the early/middle Eocene boundary was noted at Sites 548 and 549. This decrease may be correlated with the results from Holes 400A and 401, which were drilled on DSDP Leg 48 in the northeast Bay of Biscay. The decrease may represent an abrupt reduction in the supply of terrigenous material at the end of the early Eocene, reflecting, perhaps, a change in sediment transport processes at that time