987 resultados para Behavioral Androgen Responses
Resumo:
Chagas disease is a major public health issue and is mainly spread by Triatominae insects (Hemiptera: Reduviidae). Rhodnius prolixus is the main vector species in Northern South America. Host-seeking behaviour in R. prolixus is mediated by different compounds that are produced by and emanate from the host or microbiota on the host's skin. We tested the behavioural responses of sylvatic first filial generation (F1) and colony insects to extracts of human skin with a dual choice olfactometer. In addition, we compared the antennal phenotypes in both populations. No statistical differences were found between the two populations at the behavioural level. Both showed a preference for face and feet extracts and this effect was abolished for face extracts after treatment with an antibacterial gel. The observation of the antennal phenotype showed that there were differences between both groups in the total length, total surface area and number and density of bristles. However, the number and density of chemoreceptive sensilla (basiconic and thin and thick-walled trichoids) and the total density of sensilla did not show statistically significant differences. These results demonstrate that colony insects, which have only been fed with living hens for the last 30 years, are attracted by human skin extracts in a similar way as F1 sylvatic insects.
Resumo:
Cyclin-dependent kinases (CDKs) inhibitors have emerged as interesting therapeutic candidates. Of these, (S)-roscovitine has been proposed as potential neuroprotective molecule for stroke while (R)-roscovitine is currently entering phase II clinical trials against cancers and phase I clinical tests against glomerulonephritis. In addition, (R)-roscovitine has been suggested as potential antihypertensive and anti-inflammatory drug. Dysfunction of intracellular calcium balance is a common denominator of these diseases, and the two roscovitine enantiomers (S and R) are known to modulate calcium voltage channel activity differentially. Here, we provide a detailed description of short- and long-term responses of roscovitine on intracellular calcium handling in renal epithelial cells. Short-term exposure to (S)-roscovitine induced a cytosolic calcium peak, which was abolished after stores depletion with cyclopiazonic acid (CPA). Instead, (R)-roscovitine caused a calcium peak followed by a small calcium plateau. Cytosolic calcium response was prevented after stores depletion. Bafilomycin, a selective vacuolar H(+)-ATPase inhibitor, abolished the small calcium plateau. Long-term exposure to (R)-roscovitine significantly reduced the basal calcium level compared to control and (S)-roscovitine treated cells. However, both enantiomers increased calcium accumulation in the endoplasmic reticulum (ER). Consistently, cells treated with (R)-roscovitine showed a significant increase in SERCA activity, whereas (S)-roscovitine incubation resulted in a reduced PMCA expression. We also found a tonic decreased ability to release calcium from the ER, likely via IP3 signaling, under treatment with (S)- or (R)-roscovitine. Together our data revealed that (S)-roscovitine and (R)-roscovitine exert distinct enantiospecific effects on intracellular calcium signaling in renal epithelial cells. This distinct pharmacological profile can be relevant for roscovitine clinical use.
Resumo:
The antennal lobe is the primary olfactory center in the insect brain and represents the anatomical and functional equivalent of the vertebrate olfactory bulb. Olfactory information in the external world is transmitted to the antennal lobe by olfactory sensory neurons (OSNs), which segregate to distinct regions of neuropil called glomeruli according to the specific olfactory receptor they express. Here, OSN axons synapse with both local interneurons (LNs), whose processes can innervate many different glomeruli, and projection neurons (PNs), which convey olfactory information to higher olfactory brain regions. Optical imaging of the activity of OSNs, LNs and PNs in the antennal lobe - traditionally using synthetic calcium indicators (e.g. calcium green, FURA-2) or voltage-sensitive dyes (e.g. RH414) - has long been an important technique to understand how olfactory stimuli are represented as spatial and temporal patterns of glomerular activity in many species of insects. Development of genetically-encoded neural activity reporters, such as the fluorescent calcium indicators G-CaMP and Cameleon, the bioluminescent calcium indicator GFP-aequorin, or a reporter of synaptic transmission, synapto-pHluorin has made the olfactory system of the fruitfly, Drosophila melanogaster, particularly accessible to neurophysiological imaging, complementing its comprehensively-described molecular, electrophysiological and neuroanatomical properties. These reporters can be selectively expressed via binary transcriptional control systems (e.g. GAL4/UAS, LexA/LexAop, Q system) in defined populations of neurons within the olfactory circuitry to dissect with high spatial and temporal resolution how odor-evoked neural activity is represented, modulated and transformed. Here we describe the preparation and analysis methods to measure odor-evoked responses in the Drosophila antennal lobe using G-CaMP. The animal preparation is minimally invasive and can be adapted to imaging using wide-field fluorescence, confocal and two-photon microscopes.
Resumo:
SUMMARY Interest in developing intervention strategies against malaria by targeting the liver stage of the Plasmodium life cycle has been fueled by studies which show that sterile protective immunity can be achieved by immunization with radiation-attenuated sporozoites. Anti-malarial drugs and insecticides have been widely used to control the disease, but in the hope of developing a more cost-effective intervention strategy, vaccine development has taken centre stage in malaria research. There is currently no vaccine against malaria. Attenuated sporozoite-induced immunity is achieved by antibodies and T cells against malaria liver stage antigens, the most abundant being the circumsporozoite protein (CSP), and many vaccine formulations aim at mimicking this immunity. However, the mechanisms by which the antibody and T cell immune responses are generated after infection by sporozoites, or after immunization with different vaccine formulations are still not well understood. The first part of this work aimed at determining the ability of primary hepatocytes from BALB/c mice to process and present CSP-derived peptides after infection with P. berghei sporozoites. Both infected hepatocytes and those traversed by sporozoites during migration were found to be capable of processing and presenting the CSP to specific CD8+ T cells in vitro. The pathway of processing and presentation involved the proteasome, aspartic proteases and transport through a post-Endoplasmic Reticulum (ER) compartment. These results suggest that in vivo, infected hepatocytes contribute to the elicitation and expansion of a T cell response. In the second part, the antibody responses of CB6F1 mice to synthetic peptides corresponding to the N- and C-terminal domains of P. berghei and P. falciparum CS proteins were characterized. Mice were immunized with single peptides or a combination of N- and C-terminal peptides. The peptides were immunogenic in mice and the antisera generated could recognize the native CSP on the sporozoite surface. Antisera generated against the N-terminal peptides or against the combinations inhibited sporozoite invasion of hepatocytes in vitro. In vivo, more mice immunized with single P. berghei peptides were protected from infection upon a challenge with P. berghei sporozoites, than mice immunized with a combination of N- and C-terminal peptides. Furthermore, P. falciparum N-terminal peptides were recognized by serum samples from people living in malaria-endemic areas. Importantly, recognition of a peptide from the N-terminal fragment of the P. falciparum CSP by sera from children living in a malaria-endemic region was associated with protection from disease. These results underline the potential of using such peptides as malaria vaccine candidates. RESUME L'intérêt de développer des stratégies d'intervention contre la malaria ciblant le stade pré-erythrocytaire a été alimenté par des études qui montrent qu'il est possible d'obtenir une immunité par l'injection de sporozoites irradiés. Les médicaments et les insecticides anti-paludiques ont été largement utilisés pour contrôler la maladie, mais dans l'espoir de développer une stratégie d'intervention plus rentable, le développement de vaccins a été placé au centre des recherches actuelles contre la malaria. A l'heure actuelle, il n'existe aucun vaccin contre la malaria. L'immunité induite par les sporozoites irradiés est due à l'effet combiné d'anticorps et de cellules T qui agissent contre les antigènes du stade hépatique dont le plus abondant est la protéine circumsporozoite (CSP). Beaucoup de formulations de vaccin visent à imiter l'immunité induite par les sporozoites irradiés. Cependant, les mécanismes par lesquels les anticorps et les cellules T sont génerés après infection par les sporozoites ou après immunisation avec des formulations de vaccin ne sont pas bien compris. La première partie de ce travail a visé à déterminer la capacité de hépatocytes primaires provenant de souris BALB/c à "processer" et à présenter des peptides dérivés de la CSP, après infection par des sporozoites de Plasmodium berghei. Nous avons montré que in vitro, les hépatocytes infectés et ceux traversés par les sporozoites pendant leur migration étaient capables de "processer" et de présenter la CSP aux cellules T CD8+ spécifiques. La voie de présentation implique le protéasome, les protéases de type aspartique et le transport à travers un compartiment post-reticulum endoplasmique. Ces résultats suggèrent que in vivo, les hépatocytes infectés contribuent à l'induction et à l'expansion d'une réponse immunitaire spécifique aux cellules T. Dans la deuxième partie, nous avons caractérisé les réponses anticorps chez les souris de la souche CB6F1 face aux peptides N- et C-terminaux des protéines circumsporozoites de Plasmodium berghei et Plasmodium falciparum. Les souris ont été immunisées avec les peptides individuellement ou en combinaison. Les peptides utilisés étaient immunogéniques chez les souris, et les anticorps produits pouvaient reconnaître la protéine CSP native à la surface des sporozoites. In vitro, les sera contre les peptides N-teminaux et les combinaisons étaient capables d'inhiber l'invasion de hépatocytes par les sporozoites. In vivo, plus de souris immunisées avec les peptides individuels de la CSP de P. berghei étaient protégées contre la malaria que les souris immunisées avec une combinaison de peptides N- et C-terminaux. De plus, les peptides N-terminaux de la CSP de P. falciparum ont été reconnus par les sera de personnes vivant dans des régions endémiques pour la malaria. Il est intéressant de voir que la reconnaissance d'un peptide N-terminal de P. falciparum par des sera d'enfants habitant dans des régions endémiques était associé à la protection contre la maladie. Ces résultats soulignent le potentiel de ces peptides comme candidats-vaccin contre la malaria.
Resumo:
The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug-withdrawal states, this is an area of relevance to also explore adjuvant treatments for improving these adverse emotional reactions.
Resumo:
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS). Myelin oligodendrocyte glycoprotein (MOG) and myelin oligodendrocyte basic protein (MOBP) were both shown to be highly encephalitogenic in animal models of MS. In contrast, the association of MOG- and MOBP-specific humoral or cellular immune responses and MS in humans is far less established. In this study, we sought to analyse MOG- and MOBP-specific T-cell responses in a large cohort of patients with various stages of the disease. Patients with other neurological diseases and healthy subjects were enrolled to serve as control study subjects. We determined the proliferation and the secretion of IFN-γ secretion in our cohort. We found that MOG-specific T-cell responses were higher and more frequent as compared to MOBP-specific ones. However, both MS patients and control study subjects had similar myelin-specific T-cell responses at the periphery, thus calling for more precise studies at CNS level.
Resumo:
Leprosy is a slowly evolving disease that occurs mainly in adults. In this study, the Mamaría Village, state of Portuguesa was selected because it had one of the highest prevalence rates (13.25%) of leprosy cases in 1997. Between 1998-2004, 20.2% of the 89 cases registered in this village were less than 15 years old and 61.8% were males. Pau-cibacillary (PB) lesions were the predominant clinical forms identified, although also multibacillary (MB) forms were found. Additionally, 76% of the patients were bacteriologically negative. At the time of diagnosis, 75% of the patients presented with grade 0 disabilities, 23% with grade 1 and 2% with grade 2. Serum samples were collected from 18 PB and 15 MB patients, in addition to 14 family contacts, at the beginning and end of treatment. All the groups were re-evaluated during a three-year period (2008-2011). The proteins used for evaluation were ML0405, ML2331 and LID-1. These mycobacterial proteins were highly specific for Mycobacterium leprae and the IgG responses decreased in both MB and PB patients during multidrug treatment. Our results suggest that these antigens could be used as markers for successful treatment of non-reactional lepromatous patients.
Resumo:
BACKGROUND Androgen receptor (AR) gene mutations are the most frequent cause of 46,XY disorders of sex development (DSD) and are associated with a variety of phenotypes, ranging from phenotypic women [complete androgen insensitivity syndrome (CAIS)] to milder degrees of undervirilization (partial form or PAIS) or men with only infertility (mild form or MAIS). OBJECTIVE The aim of the study was to characterize the contribution of the AR gene to the molecular cause of 46,XY DSD in a series of Spanish patients. SETTING We studied a series of 133 index patients with 46,XY DSD in whom gonads were differentiated as testes, with phenotypes including varying degrees of undervirilization, and in whom the AR gene was the first candidate for a molecular analysis. METHODS The AR gene was sequenced (exons 1 to 8 with intronic flanking regions) in all patients and in family members of 61% of AR-mutated gene patients. RESULTS AR gene mutations were found in 59 individuals (44.4% of index patients), of whom 46 (78%) were CAIS and 13 (22%) PAIS. Fifty-seven different mutations were found: 21.0% located in exon 1, 15.8% in exons 2 and 3, 57.9% in exons 4-8, and 5.3% intronic. Twenty-three mutations (40.4%) had been previously described and 34 (59.6%) were novel. CONCLUSIONS AR gene mutation is the most frequent cause of 46,XY DSD, with a clearly higher frequency in the complete phenotype. Mutations spread along the whole coding sequence, including exon 1. This series shows that 60% of mutations detected during the period 2002-2009 were novel.
Resumo:
Both development and evolution under chronic malnutrition lead to reduced adult size in Drosophila. We studied the contribution of changes in size vs. number of epidermal cells to plastic and evolutionary reduction of wing size in response to poor larval food. We used flies from six populations selected for tolerance to larval malnutrition and from six unselected control populations, raised either under standard conditions or under larval malnutrition. In the control populations, phenotypic plasticity of wing size was mediated by both cell size and cell number. In contrast, evolutionary change in wing size, which was only observed as a correlated response expressed on standard food, was mediated entirely by reduction in cell number. Plasticity of cell number had been lost in the selected populations, and cell number did not differ between the sexes despite males having smaller wings. Results of this and other experimental evolution studies are consistent with the hypothesis that alleles which increase body size through prolonged growth affect wing size mostly via cell number, whereas alleles which increase size through higher growth rate do so via cell size.
Resumo:
In this study, we designed an experiment to predict a potential immunodominant T-cell epitope and evaluate the protectivity of this antigen in immunised mice. The T-cell epitopes of the candidate proteins (EgGST, EgA31, Eg95, EgTrp and P14-3-3) were detected using available web-based databases. The synthesised DNA was subcloned into the pET41a+ vector and expressed in Escherichia coli as a fusion to glutathione-S-transferase protein (GST). The resulting chimeric protein was then purified by affinity chromatography. Twenty female C57BL/6 mice were immunised with the antigen emulsified in Freund's adjuvant. Mouse splenocytes were then cultured in Dulbecco's Modified Eagle's Medium in the presence of the antigen. The production of interferon-γ was significantly higher in the immunised mice than in the control mice (> 1,300 pg/mL), but interleukin (IL)-10 and IL-4 production was not statistically different between the two groups. In a challenge study in which mice were infected with 500 live protoscolices, a high protectivity level (99.6%) was demonstrated in immunised BALB/C mice compared to the findings in the control groups [GST and adjuvant (Adj) ]. These results demonstrate the successful application of the predicted T-cell epitope in designing a vaccine against Echinococcus granulosus in a mouse model.
Resumo:
Memory CD4 T cell responses are functionally and phenotypically heterogeneous. In the present study, memory CD4 T cell responses were analyzed in different models of Ag-specific immune responses differing on Ag exposure and/or persistence. Ag-specific CD4 T cell responses for tetanus toxoid, HSV, EBV, CMV, and HIV-1 were compared. Three distinct patterns of T cell response were observed. A dominant single IL-2 CD4 T cell response was associated with the model in which the Ag can be cleared. Polyfunctional (single IL-2 plus IL-2/IFN-gamma plus single IFN-gamma) CD4 T cell responses were associated with Ag persistence and low Ag levels. A dominant single IFN-gamma CD4 T cell response was associated with the model of Ag persistence and high Ag levels. The results obtained supported the hypothesis that the different patterns observed were substantially influenced by different conditions of Ag exposure and persistence.
Resumo:
Previous research has demonstrated covariation of physiological responding with judgments of valence and arousal. However, until now links between these affective dimensions and respiratory measures have not been extensively investigated. In this study, eight picture series of different affective valence and arousal level were shown to 30 subjects, while respiration, skin conductance level (SCL), heart rate (HR) and affective judgments were measured. With increasing pleasantness, inspiratory time lengthened, mean inspiratory flow decreased and thoracic breathing increased. With increasing arousal, inspiratory time and total breath duration shortened and mean inspiratory flow, minute ventilation, thoracic breathing and electrodermal activity increased. These findings confirm the importance of arousal in respiratory responding, but also indicate a modulatory role of affective valence.We propose that the arousal effects reflect energy mobilization in preparation to act, and thatthe valence effects might be a manifestation of an attention bias toward negative stimuli. [Authors]
Resumo:
Tumor necrosis factor receptor 1 (TNFR1) and Toll-like receptors (TLRs) regulate immune and inflammatory responses. Here we show that the TNFR1-associated death domain protein (TRADD) is critical in TNFR1, TLR3 and TLR4 signaling. TRADD deficiency abrogated TNF-induced apoptosis, prevented recruitment of the ubiquitin ligase TRAF2 and ubiquitination of the adaptor RIP1 in the TNFR1 signaling complex, and considerably inhibited but did not completely abolish activation of the transcription factor NF-kappaB and mitogen-activated protein kinases 'downstream' of TNFR1. TRIF-dependent cytokine production induced by the synthetic double-stranded RNA poly(I:C) and lipopolysaccharide was lower in TRADD-deficient mice than in wild-type mice. Moreover, TRADD deficiency inhibited poly(I:C)-mediated RIP1 ubiquitination and activation of NF-kappaB and mitogen-activated protein kinase signaling in fibroblasts but not in bone marrow macrophages. Thus, TRADD is an essential component of TNFR1 signaling and has a critical but apparently cell type-specific function in TRIF-dependent TLR responses.