997 resultados para Bees Hymenoptera
Resumo:
Observation colonies containing only young workers from 10 matrix colonies were set up to investigate the genetic aspects involved in task division in Melipona quadrifasciata. Wide variation among origins was observed for all behaviors analyzed, but these differences were significant only for brood cell construction and propolis preparation
Resumo:
Juvenile hormone (JH) exerts pleiotropic functions during insect life cycles. The regulation of JH biosynthesis by neuropeptides and biogenic amines, as well as the transport of JH by specific binding proteins is now well understood. In contrast, comprehending its mode of action on target organs is still hampered by the difficulties in isolating specific receptors. In concert with ecdysteroids, JH orchestrates molting and metamorphosis, and its modulatory function in molting processes has gained it the attribute "status quo" hormone. Whereas the metamorphic role of JH appears to have been widely conserved, its role in reproduction has been subject to many modifications. In many species, JH stimulates vitellogenin synthesis and uptake. In mosquitoes, however, this function has been transferred to ecdysteroids, and JH primes the ecdysteroid response of developing follicles. As reproduction includes a variety of specific behaviors, including migration and diapause, JH has come to function as a master regulator in insect reproduction. The peak of pleiotropy was definitely reached in insects exhibiting facultative polymorphisms. In wing-dimorphic crickets, differential activation of JH esterase determines wing length. The evolution of sociality in Isoptera and Hymenoptera has also extensively relied on JH. In primitively social wasps and bumble bees, JH integrates dominance position with reproductive status. In highly social insects, such as the honey bee, JH has lost its gonadotropic role and now regulates division of labor in the worker caste. Its metamorphic role has been extensively explored in the morphological differentiation of queens and workers, and in the generation of worker polymorphism, such as observed in ants.
Resumo:
The Amazonian region, the biggest rain forest of our planet, is known for its extraordinary biodiversity. Most of this diversity is still unexplored and new species of different taxa are regularly found there. In this region, as in most areas of the world, insects are some of the most abundant organisms. Therefore, studying this group is important to promote the conservation of these highly biodiverse ecosystems of the planet. Among insects, parasitoid wasps are especially interesting because they have potential for use as biodiversity indicators and biological control agents in agriculture and forestry. The parasitoid wasp family Ichneumonidae is one of the most species rich groups among the kingdom Animalia. This group is still poorly known in many areas of the world; the Amazonian region is a clear example of this situation. Ichneumonids have been thought to be species poor in Amazonia and other tropical areas. However, recent studies are suggesting that parasitoid wasps may be quite abundant in Amazonia and possibly in most tropical areas of the world. The aim of my doctoral thesis is to study the species richness and taxonomy of two of the best known ichneumonid subfamilies in the Neotropical region, Pimplinae and Rhyssinae. To do this I conducted two extensive sampling programs in the Peruvian Amazonia. I examined also a large number of Neotropical ichneumonids deposited to different natural history museums. According to the results of my thesis, the species richness of these parasitoids in the Amazonian region is considerably higher than previously reported. In my research, I firstly further develop the taxonomy of these parasitoids by describing many new species and reporting several new faunistic records (I, II, III). In this first part I focus on two genera (Xanthopimpla and Epirhyssa) which were thought to be rather species poor. My thesis demonstrates that these groups are actually rather species rich in the Amazonian region. Secondly, I concentrate on the species richness of these parasitoids in a global comparison showing that the Neotropical region and especially the Peruvian Amazonia is one of the most species rich areas of Pimpliformes ichneumonids (V). Furthermore, I demonstrate that with the data available to date no clear latitudinal gradient in species richness is visible. Thirdly, increasing the macroecological knowledge of these parasitoids I show that some previously unreported ichneumonid subfamilies are present in the Amazonian region (IV). These new insights and the results of the global comparison of ichneumonid inventories suggest that the previous belief of low diversity in the tropics is most likely related to a lack of sampling effort in the region. Overall, my research increases the knowledge of Neotropical ichneumonids highlighting the importance of Peruvian Amazonia as one of the diversity hotspots of parasitoid wasps.
Resumo:
Em 94 amostras de méis de flores silvestres, 27 de flores de eucalipto e 34 de flores de laranjeira (totalizando 155 amostras), produzidos por Apis mellifera em 96 municípios do Estado de São Paulo, foram determinados os conteúdos de açúcares e proteínas assim como a porcentagem das amostras que se enquadram dentro das especificações da legislação brasileira. As amostras apresentaram teores de açúcares redutores de 53,2 a 80,0% (p/p), açúcares redutores totais de 67,8 a 88,3%, de sacarose de 0,1 a 27,4% e, de proteínas, de 0,0 a 1,6mg/mL. Das amostras analisadas 99,4% se enquadram nas especificações da legislação brasileira para qualidade de mel quanto aos valores de açúcares redutores; quanto a sacarose 98,0% e 39,3% para proteína.
Características físico-químicas de amostras de mel de Melipona mandacaia Smith (Hymenoptera: Apidae)
Resumo:
Análises de amostras de mel da abelha Melipona mandacaia provenientes do município de São Gabriel, região semi-árida do Estado da Bahia, foram realizadas com o objetivo de contribuir para o conhecimento das características físico-químicas desse produto. Os parâmetros analisados foram: Umidade (%); Hidroximetilfurfural (mg.kg-1); Açúcares Redutores (%); Sacarose (%); Viscosidade (mPa. s); Condutividade Elétrica (µS); pH; Acidez (meq.kg-1); Índice de Formol (mL.kg-1); e Cor. A maioria dos parâmetros físico-químicos apresentou valores médios adequados para o consumo humano, o que possibilita a exploração desse produto pelas comunidades rurais da região semi-árida da Bahia. Contudo, o teor de umidade elevado é um aspecto que requer uma maior atenção por parte do produtor, que deverá ter maiores cuidados com a higiene na manipulação do mel durante a coleta e no processo de armazenamento, evitando a sua contaminação por microrganismos que causam a depreciação do produto.
Resumo:
Abstract Many species of social insects have the ability to recognize their nestmates. In bees, sociality is maintained by bees that recognize which individuals should be helped and which should be hanned in order to maximize fitness (either inclusive or individual) (Hamilton 1964; Lin and Michener 1972). Since female bees generally lay eggs in a single nest, it is highly likely that bees found cohabitating in the same nest are siblings. According to the kin selection hypothesis, individuals should cooperate and avoid aggression with same sex nestmates (Hamilton 1964). However, in opposite sex pairs that are likely kin, aggression should increase among nestmates as an expression of inbreeding avoidance (Lihoreau et al. 2007). Female bees often guard nest entrances, recognizing and excluding foreign conspecific females that threaten to steal nest resources (Breed and Page 1991). Conversely, males that aggressively guard territories should avoid aggression towards other males that are likely kin (Shellman-Reeve and Gamboa 1984). In order to test whether Xy/ocopa virginica can distinguish nestmates from non-nestmates, circle tube testing arenas were used. Measures of aggression, cooperation and tolerance were evaluated to detennine the presence of nestmate recognition in this species. The results of this study indicate that male and female X virginica have the ability to distinguish nestmates from non-nestmates. Individuals in same sex pairs demonstrated increased pushing, biting, and C-posturing when faced with non-nestmates. Males in same sex pairs also attempted to pass (unsuccessfully) nOIl-nestmates more often than ncstmates, suggesting that this behaviour may be an cxpression of dominancc in males. Increased cooperation exemplified by successful passes was not observed among nestmates. However, incrcased tolerance in the [onn of head-to-head touching was observed for nestmates in female same sex and opposite sex pairs. These results supported the kin selection hypothesis. Moreover, increased tolerance among opposite sex non-nestmates suggested that X virginica do not demonstrate inbreeding avoidance among nestmates. 3 The second part of this study was conducted to establish the presence and extent of drifting, or travelling to different nests, in a Xylocopa virgillica population. Drifting in flying Hymenoptera is reported to be the result of navigation error and guard bees erroneously admitting novel individuals into the nest (Michener 1966). Since bees in this study were individually marked and captured at nest entrances, the locations where individuals were caught allowed me to determine where and how often bees travelled from nest to nest. Ifbees were captured near their home nests, changing nests may have been deliberate or explained by navigational error. However, ifbees were found in nests further away from their homes, this provides stronger evidence that flying towards a novel nest may have been deliberate. Female bees are often faithful to their own nests (Kasuya 1981) and no drifting was expected in female X virginica because they raise brood and contribute to nest maintenance activities. Contrary to females, males were not expected to remain faithful to a single nest. Results showed that many more females drifted than expected and that they were most often recaptured in a single nest, either their home nest or a novel nest. There were some females that were never caught in the same nest twice. In addition, females drifted to further nests when population density was low (in 2007), suggesting they seek out and claim nesting spaces when they are available. Males, as expected, showed the opposite pattern and most males drifted from nest to nest, never recaptured in the same location. This pattern indicates that males may be nesting wherever space is available, or nesting in benches nearest to their territories. This study reveals that both female and male X virginica are capable of nestmate recognition and use this ability in a dynamic environment, where nest membership is not as stable as once thought.
Resumo:
This study examined the bee fauna of the Carolinian Zone in Ontario, Canada. In 2003, 15687 individuals from 152 species of bees were collected. Tliere were many rare species but few abundant species. There were three distinct bee seasons. The Niagara bee assemblage was less diverse compared to other Carolinian Zone assemblages and types of landscapes. This study also examined how anthropogenic disturbance affects the diversity of bee assemblages. The intermediate disturbance hypothesis (IDH) was tested by selecting field sites subject to low, intermediate, and high disturbance. Intermediate disturbance had the highest species richness (SR=1 15) and most bees (N=556I), followed by low disturbance (SR= 100, N=2975), then high disturbance (SR=72, N=1364), supporting the IDH. Increased species richness in areas of intermediate disturbance was due to higher abundance, possibly because more blooming flowers were found there. Bees were larger in high disturbance areas but smaller in areas of high and intermediate disturbance.
Resumo:
Many arthropods exhibit behaviours precursory to social life, including adult longevity, parental care, nest loyalty and mutual tolerance, yet there are few examples of social behaviour in this phylum. The small carpenter bees, genus Ceratina, provide important insights into the early stages of sociality. I described the biology and social behaviour of five facultatively social species which exhibit all of the preadaptations for successful group living, yet present ecological and behavioural characteristics that seemingly disfavour frequent colony formation. These species are socially polymorphic with both / solitary and social nests collected in sympatry. Social colonies consist of two adult females, one contributing both foraging and reproductive effort and the second which remains at the nest as a passive guard. Cooperative nesting provides no overt reproductive benefits over solitary nesting, although brood survival tends to be greater in social colonies. Three main theories explain cooperation among conspecifics: mutual benefit, kin selection and manipulation. Lifetime reproductive success calculations revealed that mutual benefit does not explain social behaviour in this group as social colonies have lower per capita life time reproductive success than solitary nests. Genetic pedigrees constructed from allozyme data indicate that kin selection might contribute to the maintenance of social nesting -, as social colonies consist of full sisters and thus some indirect fitness benefits are inherently bestowed on subordinate females as a result of remaining to help their dominant sister. These data suggest that the origin of sociality in ceratinines has principal costs and the great ecological success of highly eusociallineages occurred well after social origins. Ecological constraints such as resource limitation, unfavourable weather conditions and parasite pressure have long been considered some of the most important selective pressures for the evolution of sociality. I assessed the fitness consequences of these three ecological factors for reproductive success of solitary and social colonies and found that nest sites were not limiting, and the frequency of social nesting was consistent across brood rearing seasons. Local weather varied between seasons but was not correlated with reproductive success. Severe parasitism resulted in low reproductive success and total nest failure in solitary nests. Social colonies had higher reproductive success and were never extirpated by parasites. I suggest that social nesting represents a form of bet-hedging. The high frequency of solitary nests suggests that this is the optimal strategy when parasite pressure is low. However, social colonies have a selective advantage over solitary nesting females during periods of extreme parasite pressure. Finally, the small carpenter bees are recorded from all continents except Antarctica. I constructed the first molecular phylogeny of ceratinine bees based on four gene regions of selected species covering representatives from all continents and ecological regions. Maximum parsimony and Bayesian Inference tree topology and fossil dating support an African origin followed by an Old World invasion and New World radiation. All known Old World ceratinines form social colonies while New World species are largely solitary; thus geography and phylogenetic inertia are likely predictors of social evolution in this genus. This integrative approach not only describes the behaviour of several previously unknown or little-known Ceratina species, bu~ highlights the fact that this is an important, though previously unrecognized, model for studying evolutionary transitions from solitary to social behaviour.
Resumo:
In social Hymenoptera, the division of labour is a major step in the evolution of sociality. Bees, which express many different kinds of sociality, can be classified according to how individuals share or do not share foraging and reproductive activities (Michener, 1974). The large carpenter bee, Xylocopa virginica, lives in populations with both solitary and social nests. In social nests, reproduction is controlled by the dominant female, who does all of her own foraging and egg-laying, while the subordinates guard the nest only. This study examined foraging behaviour as a way to classify the social hierarchy. Individual females were marked, measured and intensely observed for the foraging season. It was found that a large number of subordinates forage and likely obtain more reproductive fitness than previously thought. The dominance hierarchy is very likely a social queue, in which bees take turns foraging and egg-laying.
Resumo:
This study examined the impact of habitat restoration on bee communities (Hymenoptera: Apidae) of the Niagara Region, Ontario, Canada. Bee abundance and diversity was studied in three restored landfill sites: the Glenridge Quarry Naturalization Site (GQNS) in St. Catharines, Elm Street Naturalization Site in Port Colborne, and Station Road Naturalization Site in Wainfleet during 2011 and 2012. GQNS represented older sites restored from 2001-2003. Elm and Station sites represented newly restored landfills as of 2011. These sites were compared to control sites at Brock University where bee communities are well established and again to other landfills where no stable habitat was available before restoration. The objective of this study is to investigate the impact of restoration level on bee abundance and diversity in restored landfill sites of the Niagara Region. Based on the increased disturbance hypothesis (InDH) and the intermediate disturbance hypothesis (IDH), I hypothesized that bee abundance and diversity will follow two patterns. First pattern according to InDH suggest that as the disturbance decrease the bee abundance and diversity will increased. Second pattern according to the IDH bee abundance and diversity will be the highest at the intermediate level of disturbance. A total of 7 173 bees were collected using pan traps and flower collections, from May to October 2011 and 2012. Bees were classified to five families, 21 genera and sub-genera, containing at least 78 species. In 2011 bee abundance was not significantly different among restoration levels while in 2012 bee abundance was significant difference among restoration level. According to family there were no significant difference in Halictidae and Apidae abundance among restoration level while Colletidae and Megachilidae abundance were varied among restoration levels. The bee species richness was highest in the newly restored sites followed by restored control sites, and then the control site. The current study demonstrates that habitat restoration results in rapid increases in bee abundance and diversity for newly restored sites, and, further, that it takes only 2-3 years for bee assemblages in newly restored sites to arrive at the same levels of abundance and diversity as in nearby control sites where bee communities are well established.
Resumo:
Tesis (Maestría en Ciencias con Acentuación en Entomología Médica) UANL, 2012.
Resumo:
Tesis (Doctorado en Ciencias con Acentuación en Manejo y Administración de Recursos Vegetales) UANL, 2012.
Resumo:
Tesis (Doctor en Ciencias con especialidad en Microbiología) UANL, 2014.
Resumo:
La obra, aprobada por expertos en educación, trata temas reales de la vida. El lenguaje sencillo que se utiliza ayuda al niño a desarrollar su interés por la lectura y la curiosidad por el mundo en que vive. Tiene glosario alfabético.