986 resultados para Beam theory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation therapy (RT) plays currently significant role in curative treatments of several cancers. External beam RT is carried out mostly by using megavoltage beams of linear accelerators. Tumor eradication and normal tissue complications correlate to dose absorbed in tissues. Normally this dependence is steep and it is crucial that actual dose within patient accurately correspond to the planned dose. All factors in a RT procedure contain uncertainties requiring strict quality assurance. From hospital physicist´s point of a view, technical quality control (QC), dose calculations and methods for verification of correct treatment location are the most important subjects. Most important factor in technical QC is the verification that radiation production of an accelerator, called output, is within narrow acceptable limits. The output measurements are carried out according to a locally chosen dosimetric QC program defining measurement time interval and action levels. Dose calculation algorithms need to be configured for the accelerators by using measured beam data. The uncertainty of such data sets limits for best achievable calculation accuracy. All these dosimetric measurements require good experience, are workful, take up resources needed for treatments and are prone to several random and systematic sources of errors. Appropriate verification of treatment location is more important in intensity modulated radiation therapy (IMRT) than in conventional RT. This is due to steep dose gradients produced within or close to healthy tissues locating only a few millimetres from the targeted volume. The thesis was concentrated in investigation of the quality of dosimetric measurements, the efficacy of dosimetric QC programs, the verification of measured beam data and the effect of positional errors on the dose received by the major salivary glands in head and neck IMRT. A method was developed for the estimation of the effect of the use of different dosimetric QC programs on the overall uncertainty of dose. Data were provided to facilitate the choice of a sufficient QC program. The method takes into account local output stability and reproducibility of the dosimetric QC measurements. A method based on the model fitting of the results of the QC measurements was proposed for the estimation of both of these factors. The reduction of random measurement errors and optimization of QC procedure were also investigated. A method and suggestions were presented for these purposes. The accuracy of beam data was evaluated in Finnish RT centres. Sufficient accuracy level was estimated for the beam data. A method based on the use of reference beam data was developed for the QC of beam data. Dosimetric and geometric accuracy requirements were evaluated for head and neck IMRT when function of the major salivary glands is intended to be spared. These criteria are based on the dose response obtained for the glands. Random measurement errors could be reduced enabling lowering of action levels and prolongation of measurement time interval from 1 month to even 6 months simultaneously maintaining dose accuracy. The combined effect of the proposed methods, suggestions and criteria was found to facilitate the avoidance of maximal dose errors of up to even about 8 %. In addition, their use may make the strictest recommended overall dose accuracy level of 3 % (1SD) achievable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostic radiology represents the largest man-made contribution to population radiation doses in Europe. To be able to keep the diagnostic benefit versus radiation risk ratio as high as possible, it is important to understand the quantitative relationship between the patient radiation dose and the various factors which affect the dose, such as the scan parameters, scan mode, and patient size. Paediatric patients have a higher probability for late radiation effects, since longer life expectancy is combined with the higher radiation sensitivity of the developing organs. The experience with particular paediatric examinations may be very limited and paediatric acquisition protocols may not be optimised. The purpose of this thesis was to enhance and compare different dosimetric protocols, to promote the establishment of the paediatric diagnostic reference levels (DRLs), and to provide new data on patient doses for optimisation purposes in computed tomography (with new applications for dental imaging) and in paediatric radiography. Large variations in radiation exposure in paediatric skull, sinus, chest, pelvic and abdominal radiography examinations were discovered in patient dose surveys. There were variations between different hospitals and examination rooms, between different sized patients, and between imaging techniques; emphasising the need for harmonisation of the examination protocols. For computed tomography, a correction coefficient, which takes individual patient size into account in patient dosimetry, was created. The presented patient size correction method can be used for both adult and paediatric purposes. Dental cone beam CT scanners provided adequate image quality for dentomaxillofacial examinations while delivering considerably smaller effective doses to patient compared to the multi slice CT. However, large dose differences between cone beam CT scanners were not explained by differences in image quality, which indicated the lack of optimisation. For paediatric radiography, a graphical method was created for setting the diagnostic reference levels in chest examinations, and the DRLs were given as a function of patient projection thickness. Paediatric DRLs were also given for sinus radiography. The detailed information about the patient data, exposure parameters and procedures provided tools for reducing the patient doses in paediatric radiography. The mean tissue doses presented for paediatric radiography enabled future risk assessments to be done. The calculated effective doses can be used for comparing different diagnostic procedures, as well as for comparing the use of similar technologies and procedures in different hospitals and countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent, major, puzzle in the core-level photoemission spectra of doped manganites is the observation of a 1–2 eV wide shoulder with intensity varying with temperature T as the square of the magnetization over a T scale of order 200 K, an order of magnitude less than electronic energies. This is addressed and resolved here, by extending a recently proposed two-fluid polaron–mobile electron model for these systems to include core-hole effects. The position of the shoulder is found to be determined by Coulomb and Jahn-Teller energies, while its spectral weight is determined by the mobile electron energetics which is strongly T and doping dependent, due to annealed disorder scattering from the polarons and the t2g core spins. Our theory accounts quantitatively for the observed T dependence of the difference spectra, and furthermore, explains the observed correspondence between spectral changes due to increasing doping and decreasing T.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and trapping to vacancies and surfaces. Results from the energetics of pure tungsten defects were used in the development of an classical bond-order potential for describing the tungsten defects to be used in molecular dynamics simulations. The developed potential was utilized in determination of the defect clustering and annihilation properties. These results were further employed in binary collision and rate theory calculations to determine the evolution of large defect clusters that trap hydrogen in the course of implantation. The computational results for the defect and trapped hydrogen concentrations were successfully compared with the experimental results. With the aforedescribed multiscale analysis the experimental results within this thesis and found in the literature were explained both quantitatively and qualitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apart from their intrinsic physical interest, spin-polarized many-body effects are expected to be important to the working of spintronic devices. A vast literature exists on the effects of a spin-unpolarized electron-hole plasma on the optical properties of a semiconductor. Here, we include the spin degree of freedom to model optical absorption of circularly polarized light by spin-polarized bulk GaAs. Our model is easy to implement and does not require elaborate numerics, since it is based on the closed-form analytical pair-equation formula that is valid in 3d. The efficacy of our approach is demonstrated by a comparison with recent experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the effect of nonlocal scaling parameter on the terahertz wave propagation in fluid filled single walled carbon nanotubes (SWCNTs). The SWCNT is modeled as a Timoshenko beam,including rotary inertia and transverse shear deformation by considering the nonlocal scale effects. A uniform fluid velocity of 1000 m/s is assumed. The analysis shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves will increase and the corresponding wave speeds will decrease as compared to an empty SWCNT. The nonlocal scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or wave speed tends to zero). The frequency at which this phenomenon occurs is called the ``escape frequency''. The effect of fluid density on the terahertz wave propagation in SWCNT is also studied and the analysis shows that as the fluid becomes denser, the wave speeds will decrease. The escape frequency decreases with increase in nonlocal scaling parameter, for both wave modes. We also show that the effect of fluid density and velocity are negligible on the escape frequencies of flexural and shear wave modes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The book presents a reconstruction, interpretation and critical evaluation of the Schumpeterian theoretical approach to socio-economic change. The analysis focuses on the problem of social evolution, on the interpretation of the innovation process and business cycles and, finally, on Schumpeter s optimistic neglect of ecological-environmental conditions as possible factors influencing social-economic change. The author investigates how the Schumpeterian approach describes the process of social and economic evolution, and how the logic of transformations is described, explained and understood in the Schumpeterian theory. The material of the study includes Schumpeter s works written after 1925, a related part of the commentary literature on these works, and a selected part of the related literature on the innovation process, technological transformations and the problem of long waves. Concerning the period after 1925, the Schumpeterian oeuvre is conceived and analysed as a more or less homogenous corpus of texts. The book is divided into 9 chapters. Chapters 1-2 describe the research problems and methods. Chapter 3 is an effort to provide a systematic reconstruction of Schumpeter's ideas concerning social and economic evolution. Chapters 4 and 5 focus their analysis on the innovation process. In Chapters 6 and 7 Schumpeter's theory of business cycles is examined. Chapter 8 evaluates Schumpeter's views concerning his relative neglect of ecological-environmental conditions as possible factors influencing social-economic change. Finally, chapter 9 draws the main conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apart from their intrinsic physical interest, spin-polarized many-body effects are expected to be important to the working of spintronic devices. A vast literature exists on the effects of a spin-unpolarized electron-hole plasma on the optical properties of a semiconductor. Here, we include the spin degree of freedom to model optical absorption of circularly polarized light by spin-polarized bulk GaAs. Our model is easy to implement and does not require elaborate numerics, since it is based on the closed-form analytical pair-equation formula that is valid in 3d. The efficacy of our approach is demonstrated by a comparison with recent experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the Grassmannian U(2N)/U(N) x U(N) nonlinear sigma-model representation of localization, one can study the low-energy dynamics of both a free and interacting electron gas. We study the crossover between these two fundamentally different physical problems. We show how the topological arguments for the exact quantization of the Hall conductance are extended to include the Coulomb interaction problem. We discuss dynamical scaling and make contact with the theory of variable range hopping. (C) 2005 Pleiades Publishing, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the optimum design of a composite box-beam structure subject to strength constraints. Such box-beams are used as the main load carrying members of helicopter rotor blades. A computationally efficient analytical model for box-beam is used. Optimal ply orientation angles are sought which maximize the failure margins with respect to the applied loading. The Tsai-Wu-Hahn failure criterion is used to calculate the reserve factor for each wall and ply and the minimum reserve factor is maximized. Ply angles are used as design variables and various cases of initial starting design and loadings are investigated. Both gradient-based and particle swarm optimization (PSO) methods are used. It is found that the optimization approach leads to the design of a box-beam with greatly improved reserve factors which can be useful for helicopter rotor structures. While the PSO yields globally best designs, the gradient-based method can also be used with appropriate starting designs to obtain useful designs efficiently. (C) 2006 Elsevier Ltd. All rights reserved.