949 resultados para Basic chromium sulfate
Resumo:
The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.
Resumo:
This paper describes the effect of sulfate, phosphate and nitrate complexing ligands on the structural features of amorphous xerogels and on the crystallization of metastable zirconia phases during the xerogel-ceramic conversion. Powdered samples were prepared by a sol-gel route using zirconyl chloride precursors chemically modified by complexing ligands. The structural evolution of ZrO2 phases as function of firing temperature was analyzed by XRPD, EXAFS and P-13 NMR/MAS. The experimental results show the formation of metastable t-ZrO2 during the low firing temperature of xerogels modified by sulfate or phosphate groups. The martensitic tetragonal-monoclinic transformation occurs during desorption of sulfate groups. The largest temperature interval of stability of metastable tetragonal zirconia was observed for phosphate-modified xerogels.
Resumo:
Titanium(IV) oxide, coated on the surface of silica gel (surface area, 308 m2 g-1; amount of Ti(IV) per gram of modified silica gel, 1.8 x 10(-3) mol), was used to adsorb CrO4(2-) ions from acidic solutions. The exchange capacity increased at lower pH values and was affected to some extent by the acid used. The material was used to preconcentrate Cr(VI) from 0.5 ppm solutions of chromate very efficiently and virtually 100% recovery was achieved in every instance.
Resumo:
Calcium binding and charge distribution on a fucosylated chondroitin sulfate and a standard chondroitin 6-sulfate have been studied using a metallochromic indicator and conductimetric titrations. The fucosylated chondroitin sulfate has a similar to 5-fold greater affinity for calcium ions than the standard chondroitin 6-sulfate. Possibly, this increased affinity for calcium ions is due to the branches on the fucosylated chondroitin sulfate, since the calcium affinity of an unbranched, sulfated fucan is similar to that of the standard chondroitin 6-sulfate. More charged groups per disaccharide unit (and a shorter distance between these groups) also distinguish the fucosylated chondroitin sulfate from standard chondroitin 6-sulfate. Comparison between native and chemically modified (desulfated or carboxyl-reduced) polysaccharides suggests that the sulfate esters are responsible for the increased charge density of the fucosylated chondroitin sulfate and that the presence of the fucose branches does not alter the length of the repetitive units which compose the central core of chondroitin from sea cucumber. These results are consistent with the chemical studies of these two polysaccharides.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A capillary zone electrophoresis method using indirect UV detection for the analysis of chloride and sulfate in alcohol fuel samples was developed. The anions were analyzed in less than 3 min using an electrolyte containing 10 mmol 1(-1) chromate and 0.75 mmol 1(-1) hexamethonium bromide (HMB) as electroosmotic flow modifier. Coefficients of variation were better than 0.6% for migration time (n = 10) and between 2.05 and 2.82% for peak area repeatabilities. Analytical curves of peak area versus concentration in the range of 0.065-0.65 mg kg(-1) for chloride and 0.25-4.0 mg kg(-1) for sulfate were linear with coefficients of correlation higher than 0.9996. The limits of detection for sulfate and chloride were 0.033 and 0.041 mg kg(-1), respectively. Recovery values ranged from 85 to 103%. The method was successfully applied for the quantification of sulfate and chloride in five alcohol fuel samples. The concentration of sulfate varied from 0.45 to 3.12 mg kg(-1). Chloride concentrations were below the method's LOD.
Resumo:
The sols prepared by mixing a ZrOCl2 acidified solution to a hot H2SO4 aqueous solutions were studied in order to clarify the mechanism of thermoreversible sol-gel transition observed in this system. The viscoelastic properties of these suspensions were analyzed during the sol-gel transition by dynamic rheological measurements and quasi-elastic light scattering. The rheological properties were correlated to mass fractal and nearly linear growth models, and percolation theory. The results evidence that the thermoreversible sol-gel transition in this system is due to the formation of a network of physically linked aggregates having fractal structure. The decrease of the SO42- contents in the initial solution leads to the decrease of the fractal dimensionality from 2.3 to 1.8, indicating a change of the kinetic mechanism of aggregate growth. Near the gel point these samples have the typical scaling expected from percolation theory. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Screen-printed carbon electrode (SPCE) modified with poly-L-histidine film can be successfully applied for chromium(VI) determination based on its pre-concentration. Optimum adherence and stability of the POIY-L-histidine film was obtained by direct addition of PH solution 1% (w/v) on the electrode surface, followed by heating at 80 degrees C during 5 min. Linear response range, sensitivity and limit of detection were 0. 1-150 [mu mol L-1, 4. 13 LA mu mol L` and 0.046 mu mol L-1. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation, was measured as 3.2% for 10 experiments in 40 mu mol L-1 using the same electrode and 4.0% using screen-printed electrode as disposable sensor, respectively. The voltammetric sensor was applied to determination of Cr(VI) and indirect determination of Cr(III) in wastewater samples previously treated by a leather dyeing industry and the average recovery for these samples was around 97%. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Solid Ln-OKCO3-DMCP compounds, where Ln represents lanthanides (III) and yttrium (III) ions and DMCP is the anion 4-dimethyiaminocinnamylidenepyruvate, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and elemental analysis have been used to characterize the compounds. The thermal stability as well as the thermal decomposition of these compounds were studied using an alumina crucible in an air atmosphere.
Resumo:
The hydrated basis carbonates of lanthanides and yttrium were prepared by precipitation from homogeneous solution via the hydrolysis of urea, without the addition of an auxiliary anion. Thermogravimetry, derivative thermogravimetry (TG-DTG), and differential thermal analysis (DTA) have been used in the study of these compounds in CO2 atmosphere. The results lead to the composition and thermal stability of the studied compounds, and also to a comparative study with reported results in air atmosphere.
Resumo:
The electrochemical behavior of a coating of cobalt oxide on cold-rolled steel in alkaline sodium sulfate was Studied using the electrochemical techniques of open-circuit potential measurements and electrochemical impedance spectroscopy. The coating was prepared at different annealing temperatures ranging from 350 to 750 degreesC and characterized by SEM, EDX and XRD. Below 550 degreesC the composition of the coating was basically of Co3O4. At 750 degreesC CoO was formed and big cracks appeared on the film exposing an inner layer of iron oxides. Analysis of the EIS data is very difficult because of the complexity of the interface structure. It can be inferred that the charge transfer resistance of the coatings prepared at 350 and 450 C were higher than those for the coatings prepared at temperatures above 550 degreesC. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
In this study undoped and Cr, Sb or Mo doped TiO(2) were synthesized by polymeric precursor method and characterized by X-ray diffraction, UV-VIS spectroscopy, infrared spectroscopy and thermogravimetry (TG). The TG curves showed a continuous mass loss assigned to the hydroxyl elimination and Cr(6+) reduction. Doped TiO(2) samples showed a higher mass loss assigned to water and gas elimination at lower temperatures. In these doped materials a decrease in the anatase-rutile phase transition temperature was observed. After calcination at 1,000 A degrees C, rutile was obtained as a single phase material without the presence of Cr(6+).