941 resultados para Bar Hebraeus, 1226-1286.
Resumo:
We construct the Drinfeld twists (or factorizing F-matrices) of the supersymmetric model associated with quantum superalgebra U-q(gl(m vertical bar n)), and obtain the completely symmetric representations of the creation operators of the model in the F-basis provided by the F-matrix. As an application of our general results, we present the explicit expressions of the Bethe vectors in the F-basis for the U-q(gl(2 vertical bar 1))-model (the quantum t-J model).
Resumo:
The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes.
Resumo:
Objective: To introduce a new technique for co-registration of Magnetoencephalography (MEG) with magnetic resonance imaging (MRI). We compare the accuracy of a new bite-bar with fixed fiducials to a previous technique whereby fiducial coils were attached proximal to landmarks on the skull. Methods: A bite-bar with fixed fiducial coils is used to determine the position of the head in the MEG co-ordinate system. Co-registration is performed by a surface-matching technique. The advantage of fixing the coils is that the co-ordinate system is not based upon arbitrary and operator dependent fiducial points that are attached to landmarks (e.g. nasion and the preauricular points), but rather on those that are permanently fixed in relation to the skull. Results: As a consequence of minimizing coil movement during digitization, errors in localization of the coils are significantly reduced, as shown by a randomization test. Displacement of the bite-bar caused by removal and repositioning between MEG recordings is minimal (∼0.5 mm), and dipole localization accuracy of a somatosensory mapping paradigm shows a repeatability of ∼5 mm. The overall accuracy of the new procedure is greatly improved compared to the previous technique. Conclusions: The test-retest reliability and accuracy of target localization with the new design is superior to techniques that incorporate anatomical-based fiducial points or coils placed on the circumference of the head. © 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mathematical methods in systematic conservation planning (SCP) represent a significant step toward cost-effective, transparent allocation of resources for biodiversity conservation. However, research demonstrates important consequences of uncertainties in SCP. Current research often relies on simplified case studies with unknown forms and amounts of uncertainty and low statistical power for generalizing results. Consequently, conservation managers have little evidence for the true performance of conservation planning methods in their own complex, uncertain applications. SCP needs to build evidence for predictive models of error and robustness to multiple, simultaneous uncertainties across a wide range of problems of known complexity. Only then can we determine true performance rather than how a method appears to perform on data with unknown uncertainty.
Resumo:
This thesis addresses the kineto-elastodynamic analysis of a four-bar mechanism running at high-speed where all links are assumed to be flexible. First, the mechanism, at static configurations, is considered as structure. Two methods are used to model the system, namely the finite element method (FEM) and the dynamic stiffness method. The natural frequencies and mode shapes at different positions from both methods are calculated and compared. The FEM is used to model the mechanism running at high-speed. The governing equations of motion are derived using Hamilton's principle. The equations obtained are a set of stiff ordinary differential equations with periodic coefficients. A model is developed whereby the FEM and the dynamic stiffness method are used conjointly to provide high-precision results with only one element per link. The principal concern of the mechanism designer is the behaviour of the mechanism at steady-state. Few algorithms have been developed to deliver the steady-state solution without resorting to costly time marching simulation. In this study two algorithms are developed to overcome the limitations of the existing algorithms. The superiority of the new algorithms is demonstrated. The notion of critical speeds is clarified and a distinction is drawn between "critical speeds", where stresses are at a local maximum, and "unstable bands" where the mechanism deflections will grow boundlessly. Floquet theory is used to assess the stability of the system. A simple method to locate the critical speeds is derived. It is shown that the critical speeds of the mechanism coincide with the local maxima of the eigenvalues of the transition matrix with respect to the rotational speed of the mechanism.
Resumo:
Reports on the issues addressed at the Bar Council-Aimhigher widening participation conference, "How to get to the Bar" held at St Philips Chambers, Birmingham on July 12, 2010 and attended by 80 sixth form students.
Resumo:
Four bar mechanisms are basic components of many important mechanical devices. The kinematic synthesis of four bar mechanisms is a difficult design problem. A novel method that combines the genetic programming and decision tree learning methods is presented. We give a structural description for the class of mechanisms that produce desired coupler curves. Constructive induction is used to find and characterize feasible regions of the design space. Decision trees constitute the learning engine, and the new features are created by genetic programming.
Resumo:
The purpose of this research was to examine bartender workplace behavior. This study begins with a review of the literature pertaining to the job of bartending, and positive work behavior (citizenship) and negative (deviant) workplace behavior. Data was collected by semi-structured interview. The bartenders expressed instances of both behaviors and showed support for a newly termed citizenship behavior, norm avoidance.
Resumo:
Peer-reviewed studies that have examined the effect of the enactment of smoke-free ordinances on restaurant and bar sales have uniformly found that the enactment of these ordinances does not decrease restaurant or bar sales, with most studies observing no effect on restaurant revenues.