998 resultados para Baltic Sea System Study
Resumo:
The collection of ferromanganese nodules at Naturhistoriska Riksmuseet, Stockholm, Sweden has been donated by Pr. Boström, K. and Ingri, J. from the Technical University of Lulea. They have been collected in the Bothnia Gulf, the Baltic Sea anfd the Barents sea from 1976 until 1985. In 1997 it is was put to the care custody of the Laboratory for Isotope Geology (LIG) of NRM. As part of the Access Project at LIG, Curt Boman has gone through the collection and established a database with detailed information about the samples it contains. Ferromanganese nodules typically display a rounded shape and are formed by redox processes at the interface between the seabed sediment and water. In addition to iron and manganese they also contain other metal elements. Nodules chemical composition reflects the substances found in the sediment to which they are associated. Since the nodules grow continuously, they reflect changes in the sedimentary environment chemistry on a yearly basis, which makes them very interesting as environmental archives. The nodules can be found locally in large quantities and due to their metal content they are also economically interesting as a source of raw materials.
Resumo:
Ferromanganese concretions cover large areas of the Gulf of Bothnia. They are flat to well-rounded, the rounded ones being richer in oxyhydroxides of iron and manganese. Rounded and ellipsoidal nodules, particularly those in the northern Gulf of Bothnia, are richest in Mn, Ni, Ba and Cu, which probably coexist in a Mn oxyhydroxide phase. Flat nodules are enriched in Fe, P, rare earths and As, probably associated with an Fe oxy-hydroxide component. Aluminum, V, Cr and Ti occur in still another phase. The sediments of the gulf generally consist of a 10-50 mm-thick layer of oxidized surface sediment, enriched in Mn, Ba, P and Ni lying on top of reduced sediments which are diagenetically depleted in these elements. The remobilized elements have redeposited in the nodules, but this process cannot explain the origin of all the nodular material. Some released Mn, Ba and Ni furthermore enter into suspended phases, which eventually leave the Baltic Sea. The economic value of the nodules in the Gulf of Bothnia is probably limited at present.
Resumo:
The distribution of methane and hydrogen sulfide concentrations in sediments of various basins of the Baltic Sea was investigated during 4 cruises in 1995 and 1996. Significant differences in the concentrations of both compounds were recorded between the basins and also between different areas within the Gotland Deep. High-methane sediments with distinctly increasing concentrations from the surface to deeper layers were distinguished from low-methane sediments without a clear gradient. Methane concentrations exhibited a fair correlation with the sediment accumulation rate, determined by measuring the total thickness of the post-Ancylus Holocene sequence on echosounding profiles in the Gotland Deep. Only weak correlations were observed with the content of organic matter in the surface layers of the sediments. Hydrogen sulfide concentrations in the sediments showed a positive correlation with methane concentrations, but, in contrast to methane concentrations, were strongly influenced by the transition from oxic to anoxic conditions in the water column between 1995 and 1996. Sediments in the deepest part of the Gotland Basin (>237 m water depth), covering an area of approximately 35 km**2, were characterized by especially high accumulation rates (>70 cm/ka) and high methane and hydrogen sulfide contents. Concentrations of these compounds decreased rapidly towards the slope of the basin.
Resumo:
Density and diversity of bottom fauna population as dependent on sediment types and water depth is largely well known in Kiel Bay. This is in contrast to structures and processes of bioturbation, although generally it has a big influence on the benthic boundary layer and its processes, e.g., the metabolism of the bottom fauna, the mechanical properties, the age dating, and the large field of chemical processes. In the densely inhabited sands and muddy sands of the shallower waters with sediment thicknesses of some decimeters only, bioturbation is usually ubiquitous, and most of the structures left are monotonously of "biodeformational" character. At greater water depths, however, where a sedimentary column of several meters of Holocene is developed, the X-ray radiographs of numerous sediment cores show heterogeneous biogenic structures with regional and stratigraphical differentiation. They are described in terms of ichnofabrics and are interpreted on ethological knowledge of the related macrobenthos species. lmportant organisms creating specific traces include the bivalve Arctica (Cyprina) islandica and the polychaete worm Pectinaria koreni. These species are abundant in Kiel Bay and produce by their crawling-plowing mode of locomotion, a characteristic biogenic stratification, the "plow-sole structure". Other typical biogenic structures are tube traces, which are left by a number of different polychaetes occurring either singly, or as U-pairs mainly in mud sediments. Although sea urchins are rare to absent in Kiel Bay, layers of their characteristic traces Scolicia occur as witness of paleohydrographic events in channel sediments of the central bay. Plow-sole traces, polychaete-tube ichnofabric, Scolicia layers and alternations of laminated and bioturbated layers are considered as building blocks of a future "ichnostratigraphy" of Kiel Bay.
Resumo:
The Baltic Sea is the largest brackish water area of the world. On the basis of the data from 16 cruises, we show the seasonal and vertical distribution patterns of the appendicularians Fritillaria borealis, Oikopleura dioica and the cyclopoid copepod Oithona similis, in the highly stratified Bornholm Basin. These species live at least temporarily below the permanent halocline and use different life strategies to cope with the brackish environment. The cold-water species F. borealis is abundant in the upper layers of the water column before the thermocline develops. With the formation of the thermocline abundance decreases and the specimens outlast higher temperatures below the halocline. Distribution and strategy suggest that F. borealis might be a glacial relict species in the Baltic Sea. Although Oikopleura dioica is only abundant during summer, O. similis is present all year round. Both species have in common that their vertical distribution is restricted to the waters below the halocline, most likely due to their requirements of higher salinities. We argue that the observed strategies are determined by ecophysiological constraints and life history traits. These species share an omnivorous feeding behaviour and the capability to utilise a spectra of small particles as food. As phytoplankton concentration is negligible below the halocline, we suggest that these species feed on organic material and heterotrophic organisms that accumulate in the density gradient of the halocline. Therefore, the deep haline waters in the Baltic Sea represent a habitat providing shelter from predation and food supply for adapted species that allows them to gather sufficient resources and to maintain populations.
Resumo:
Results of radiocarbon dating of bottom sediments from the Baltic Sea are presented for four areas investigated during Cruises 16 and 26A of R/V Akademik Kurchatov. The dating was based mainly on organic matter from the sediments. At marine Holocene stage sedimentation rate was 0.2-1.0 mm/yr, with a sharp increase at the Sub-Atlantic Holocene phase. Considerable re-deposited sediment strata present in deep-water troughs. Material from bottom deposits of the stage of glacier-associated Baltic lakes, inherited from moraine deposits according to radiocarbon dating, represents sediments from a basin that existed at the site of the present-day Baltic Sea in the second half of Middle Würm and re-worked by a glacier.
Resumo:
Recent sediment cores of the western Baltic Sea were analyzed for heavy metal and carbon isotope contents. The sedimentation rate was determined from radiocarbon dates to be 1.4 mm/yr. The 'recent age' of the sediment was about 850 yr. Within the upper 20 cm of sediment, certain heavy metals became increasingly enriched towards the surface; Cd, Pb, Zn and Cu increased 7-, 4-, 3- and 2-fold, respectively, whereas Fe, Mn, Ni and Co remained unchanged. Simultaneously, the radiocarbon content decreased by about 14 per cent. The enrichment in heavy metals as well as the decrease in the 14C-concentration during the last 130 ± 30yr parallels industrial growth as reflected in European fossil fuel consumption within that same period of time. The near-surface sediments are affected by residues released from fossil fuels at the rate of about 30 g/m**2 yr for the past two decades. The residues have a pronounced effect on the heavy metal and carbon isotope composition of the most Recent sediments allowing estimates to be made for sedimentation, erosion and heavy metal pollution.
Resumo:
We studied the grain-size, mineral and chemical compositions, physical properties, radiocarbon age, spore-pollen spectra, and diatom composition in sediments from Core PSh24-2537 sampled in the West Gotland Basin. Four lithological-stratigraphic units were distinguished: varved clays of the Baltic Ice Lake, black and black-gray (sulfide) clays of the Yoldian Sea, gray clays of Ancylus Lake, and greenish-gray sapropel-like littorine and post-littorine silts of the marine stage of Holocene. These units differ from each other both in their matter composition and in plant remains. In the littorine silts organic carbon concentra¬tion reached from 1.5 to 10.35%. Conditions of sediment accumulation and the stages of evolution of the West Gotland Basin over the post-glacial time are characterized.