908 resultados para BRCA1, DNA damage, genome stability, DNA repair, mRNA splicing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the availability of a large amount of genomic data it is expected that the influence of single nucleotide variations (SNVs) in many biological phenomena will be elucidated. Here, we approached the problem of how SNVs affect alternative splicing. First, we observed that SNVs and exonic splicing regulators (ESRs) independently show a biased distribution in alternative exons. More importantly, SNVs map more frequently in ESRs located in alternative exons than in ESRs located in constitutive exons. By looking at SNVs associated with alternative exon/intron borders (by their common presence in the same cDNA molecule), we observed that a specific type of ESR, the exonic splicing silencers (ESSs), are more frequently modified by SNVs. Our results establish a clear association between genetic diversity and alternative splicing involving ESSs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unfolded protein response (UPR)-mediated pancreatic beta-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against beta-cell death induced by proinflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) andC/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2 alpha kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic beta-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT. Journal of Endocrinology (2010) 206, 183-193

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this work were to investigate the role of nuclear Phospholipase C beta 1 (PI-PLCβ1) in human and mouse cell lines and to identify new binding partners of nuclear PI-PLCβ1 to further understand the functional network in which the enzyme acts. The intracellular distribution of PI-PLCβ1 was further investigated in human leukaemia cell lines (NB4, HL60, THP1, CEM, Jurkat, K562). With the exception of HL60, a high endogenous level of PI-PLCβ1 was detected in purified nuclei in each of the cell lines. We found that also in Ba/F3 pro-B cells overexpressing PI-PLCβ1b the protein localize within the nucleus. Although our data demonstrated that PI-PLCβ1b was not involved in cell proliferation and IGF-1 response as shown in other cell lines (FELC and Swiss 3T3), there was an effect on apoptosis. Activation of early apoptotic markers caspase-3 and PARP was delayed in PI-PLCβ1b overexpressing Ba/F3 cells treated with 5 gr/ml mitomycin C for 24h. We performed an antibody-specific immunoprecipitation on nuclear lysates from FELC-PLCβ1b cells. Mass spectrometry analysis (nano-ESI-Q-TOF) of co-immunoprecipitated proteins allowed for identification of 92 potential nuclear PI-PLCβ1b interactors. Among these, several already documented PI-PLCβ1b interacting partners (Srp20, LaminB, EF1α2) were identified, further validating our data. All the identified proteins were nuclear, mostly localized within the nuclear speckles. This evidence is particularly relevant as PI-PLCβ1 is known to localize in the same domains. Many of the identified proteins are involved in cell cycle, proliferation and transcriptional control. In particular, many of the proteins are components of the spliceosome multi-complex, strengthening the idea that PI-PLCβ1b is involved in mRNA processing and maturation. Future work will aim to better characterize the regulatory role of PI-PLCβ1b in mRNA splicing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT AND OBJECTIVE: Alteration of exon splice enhancers (ESE) may cause autosomal dominant GH deficiency (IGHD II). Disruption analysis of a (GAA) (n) ESE motif within exon 3 by introducing single-base mutations has shown that single nucleotide mutations within ESE1 affect pre-mRNA splicing. DESIGN, SETTING, AND PATIENTS: Confirming the laboratory-derived data, a heterozygous splice enhancer mutation in exon 3 (exon 3 + 2 A-->C) coding for GH-E32A mutation of the GH-1 gene was found in two independent pedigrees, causing familial IGHD II. Because different ESE mutations have a variable impact on splicing of exon 3 of GH and therefore on the expression of the 17.5-kDa GH mutant form, the GH-E32A was studied at the cellular level. INTERVENTIONS AND RESULTS: The splicing of GH-E32A, assessed at the protein level, produced significantly increased amounts of 17.5-kDa GH isoform (55% of total GH protein) when compared with the wt-GH. AtT-20 cells coexpressing both wt-GH and GH-E32A presented a significant reduction in cell proliferation as well as GH production after forskolin stimulation when compared with the cells expressing wt-GH. These results were complemented with confocal microscopy analysis, which revealed a significant reduction of the GH-E32A-derived isoform colocalized with secretory granules, compared with wt-GH. CONCLUSION: GH-E32A mutation found within ESE1 weakens recognition of exon 3 directly, and therefore, an increased production of the exon 3-skipped 17.5-kDa GH isoform in relation to the 22-kDa, wt-GH isoform was found. The GH-E32A mutant altered stimulated GH production as well as cell proliferation, causing IGHD II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HIV-1 regulatory proteins Tat and Rev are encoded by multiply spliced mRNAs that differ by the use of alternative 3' splice sites at the beginning of the internal exon. If these internal exons are skipped, the expression of these genes, and hence HIV-1 multiplication, should be inhibited. We have previously developed a strategy, based on antisense derivatives of U7 small nuclear RNA, that allows us to induce the skipping of an internal exon in virtually any gene. Here, we have successfully applied this approach to induce a partial skipping of the Tat, Rev (and Nef) internal exons. Three functional U7 constructs were subcloned into a lentiviral vector. Two of them strongly reduced the efficiency of lentiviral particle production compared to vectors carrying either no U7 insert or unrelated U7 cassettes. This defect could be partly or fully compensated by coexpressing Rev from an unspliced mRNA in the producing cell line. Upon stable transduction into CEM-SS or CEM T-lymphocytes, the most efficient of these constructs inhibits HIV-1 multiplication. Although the inhibition is not complete, it is more efficient in combination with another mechanism inhibiting HIV multiplication. Therefore, this new approach targeting HIV-1 regulatory genes at the level of pre-mRNA splicing, in combination with other antiviral strategies, may be a useful new tool in the fight against HIV/AIDS. Copyright (c) 2007 John Wiley & Sons, Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classic cystic fibrosis (CF) is caused by two loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, whereas patients with nonclassic CF have at least one copy of a mutant gene that retains partial function of the CFTR protein. In addition, there are several other phenotypes associated with CFTR gene mutations, such as idiopathic chronic pancreatitis. In CFTR-associated disorders and in nonclassic CF, often only one CFTR mutation or no CFTR mutations can be detected. In this study, we screened 23 patients with CFTR-associated disorders for CFTR mutations by complete gene testing and quantitative transcript analysis. Mutations were found in 10 patients. In cells from respiratory epithelium, we detected aberrant splicing of CFTR mRNA in all investigated individuals. We observed a highly significant association between the presence of coding single-nucleotide polymorphisms (coding SNPs, or cSNPs) and increased skipping of exon 9 and 12. This association was found both in patients and in normal individuals carrying the same cSNPs. The cSNPs c.1540A>G, c.2694T>G, and c.4521G>A may have affected pre-mRNA splicing by changing regulatory sequence motifs of exonic splice enhancers, leading to lower amounts of normal transcripts. The analysis of CFTR exons indicated that less frequent and weak exonic splicing enhancer (ESE) motifs make exon 12 vulnerable to skipping. The number of splice variants in individuals with cSNPs was similar to previously reported values for the T5 allele, suggesting that cSNPs may enhance susceptibility to CFTR related diseases. In addition, cSNPs may be responsible for variation in the phenotypic expression of CFTR mutations. Quantitative approaches rather than conventional genomic analysis are required to interpret the role of cSNPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many diseases affect pre-mRNA splicing, and alternative splicing is a major source of proteome diversity and an important mechanism for modulating gene expression. The ability to regulate a specific splicing event is therefore desirable; for example, to understand splicing-associated pathologies. We have developed methods based on modified U7 snRNAs, which allow us to induce efficient skipping or inclusion of selected exons. Here, we have adapted these U7 tools to a regulatable system that relies on a doxycycline-sensitive version of the Kruppel-associated box (KRAB)/KAP1 transcriptional silencing. Co-transduction of target cells with two lentiviral vectors, one carrying the KRAB protein and the other the regulatable U7 cassette, allows a tight regulation of the modified U7 snRNA. No leakage is observed in the repressed state, whereas full induction can be obtained with doxycycline in ng ml(-1) concentrations. Only a few days are necessary for a full switch, and the induction/repression can be repeated over several cycles without noticeable loss of control. Importantly, the U7 expression correlates with splicing correction, as shown for the skipping of an aberrant beta-globin exon created by a thalassaemic mutation and the promotion of exon 7 inclusion in the human SMN2 gene, an important therapeutic target for spinal muscular atrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The murine sarcoma virus MuSVts110 exhibits an alternative RNA splicing pattern. Like other simple retroviruses, MuSVts110 pre-mRNA splicing is balanced to allow the production of both spliced and unspliced RNA during the replicative cycle. In addition to balance, MuSVts110 RNA splicing exhibits a unique growth-temperature restriction to splicing; temperatures below 33$\sp\circ$C are permissive for splicing while temperatures of 37$\sp\circ$C or above are non-permissive. Previous work has established that this thermosensitive splicing phenotype is mediated in cis by viral transcript features. Here we show that at least three sequence elements regulate the MuSVts110 splicing phenotype. First, the MuSVts110 branchpoint (BP) and poly-pyrimidine tract (PPT) were found to be determinants of overall splicing efficiency. Wild-type MuSVts110 possesses a weak BP and PPT adjacent to the 3$\sp\prime$ splice site. Introduction of a strong BP caused MuSVts110 splicing to proceed to virtual completion in vivo, thus losing any vestige of balance or thermosensitivity. In in vitro splicing extracts, the strong BP overcame a blockade to wt MuSVts110 splicing at both the first and second catalytic steps. Weakening the consensus nature of the strong BP allowed the recovery of thermosensitive splicing in vivo, and reinstated the blockades to splicing in vitro, arguing that a suboptimal BP is an unusual manifestation of the proportional splicing pattern of retroviruses. The PPT is essential for accurate recognition of the BP sequence by the splicing machinery. Lengthening the PPT of MuSVts110 from 9 to 19 consecutive pyrimidines increased the overall efficiency of splicing in vivo dramatically, but was less effective than the strong BP in overriding the restriction on splicing imposed by high growth temperatures. Finally, decreasing gradually the overall size of the intron unexpectedly reduced splicing efficiency at growth temperatures permissive for splicing, suggesting that non-conserved sequences within the intron of MuSVts110 participate in splicing regulation as well. Taken together, these results suggest a mechanism of control in which MuSVts110 splicing is modulated by the entire intron, but principally by suboptimal signals at the splice acceptor site. Furthermore, this retroviral system provides a powerful genetic method for selection and analysis of mutations that affect splicing. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human immunodeficiency virus 1 (HIV-1) multiplication depends on a cellular protein, cyclophilin A (CyPA), that gets integrated into viral particles. Because CyPA is not required for cell viability, we attempted to block its synthesis in order to inhibit HIV-1 replication. For this purpose, we used antisense U7 small nuclear RNAs (snRNAs) that disturb CyPA pre-mRNA splicing and short interfering RNAs (siRNAs) that target CyPA mRNA for degradation. With dual-specificity U7 snRNAs targeting the 3' and 5' splice sites of CyPA exons 3 or 4, we obtained an efficient skipping of these exons and a strong reduction of CyPA protein. Furthermore, short interfering RNAs targeting two segments of the CyPA coding region strongly reduced CyPA mRNA and protein levels. Upon lentiviral vector-mediated transduction, prolonged antisense effects were obtained for both types of antisense RNAs in the human T-cell line CEM-SS. These transduced CEM-SS cells showed a delayed, and for the siRNAs also reduced, HIV-1 multiplication. Since the two types of antisense RNAs function by different mechanisms, combining the two approaches may result in a synergistic effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polypeptide composition of the U7 small nuclear ribonucleoprotein (snRNP) involved in histone messenger RNA (mRNA) 3' end formation has recently been elucidated. In contrast to spliceosomal snRNPs, which contain a ring-shaped assembly of seven so-called Sm proteins, in the U7 snRNP the Sm proteins D1 and D2 are replaced by U7-specific Sm-like proteins, Lsm10 and Lsm11. This polypeptide composition and the unusual structure of Lsm11, which plays a role in histone RNA processing, represent new themes in the biology of Sm/Lsm proteins. Moreover this structure has important consequences for snRNP assembly that is mediated by two complexes containing the PRMT5 methyltransferase and the SMN (survival of motor neurons) protein, respectively. Finally, the ability to alter this polypeptide composition by a small mutation in U7 snRNA forms the basis for using modified U7 snRNA derivatives to alter specific pre-mRNA splicing events, thereby opening up a new way for antisense gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used three beta-thalassemic mutations, IVS2-654, -705 and -745, that create aberrant 5' splice sites (5' ss) and activate a common cryptic 3' ss further upstream in intron 2 of the human beta-globin gene to optimize a generally applicable exon-skipping strategy using antisense derivatives of U7 small nuclear RNA (snRNA). Introducing a modified U7 snRNA gene carrying an antisense sequence against the cryptic 3' ss into cultured cells expressing the mutant beta-globin genes, restored correct beta-globin mRNA splicing for all three mutations, but the efficiency was much weaker for IVS2-654 than for the other mutations. The length of antisense sequence influenced the efficiency with an optimum of approximately 24 nucleotides. Combining two antisense sequences directed against different target sites in intron 2, either on separate antisense RNAs or, even better, on a single U7 snRNA, significantly enhanced the efficiency of splicing correction. One double-target U7 RNA was expressed on stable transformation resulting in permanent and efficient suppression of the IVS2-654 mutation and production of beta-globin. These results suggest that forcing the aberrant exon into a looped secondary structure may strongly promote its exclusion from the mRNA and that this approach may be used generally to induce exon skipping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTENTS. 1. Did life begin with catalytic RNA?–2. Self-splicing and self-cleaving RNAs–2.1 Self-splicing of group I introns – 2.2 Self-splicing of group II introns – 2.3 Self-cleaving RNAs–3. Splicing mediated by trans-acting factors–3.1 Group III introns – 3.2 Splicing of nuclear pre-mRNAs – 3.3 Trans-splicing – 3.4 Is nuclear pre-mRNA splicing evolutionarily related to group I and group II self-splicing?– 3.5 Non-RNA mediated splicing of tRNAs–4. Processing of ribosomal precursor RNAs–5. Processing of pre-mRNA 3′ ends–5.1 Polyadenylation – 5.2 Histone pre-mRNA 3′ processing–6. Other RNPs involved in metabolic mechanisms–6.1 5′ end processing of pre-tRNAs by RNase P – 6.2 The signal recognition particle – 6.3 Telomerase – 6.4 RNA editing in trypanosomatid mitochondria–7. Why RNA?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translation termination as a result of premature nonsense codon-incorporation in a RNA transcript can lead to the production of aberrant proteins with gain-of-function or dominant negative properties that could have deletrious effects on the cell. T-cell Receptor (TCR) genes acquire premature termination codons two-thirds of the time as a result of the error-prone programmed rearrangement events that normally occur during T-cell development. My studies have focused on the fate of TCR precursor mRNAs in response to in-frame nonsense mutations. ^ Previous published studies from our laboratory have shown that TCR precursor mRNAs are subject to nonsense mediated upregulation of pre-mRNA (NMUP). In this dissertation, I performed substitution and deletion analysis to characterize specific regions of TCR which are required to elicit NMUP. I performed frame- and factor-dependence studies to determine its relationship with other nonsense codon induced responses using several approaches including (i) translation dependence studies (ii) deletion and mutational analysis, as well as (iii) siRNA mediated knockdown of proteins involved. I also addressed the underlying molecular mechanism for this pre-mRNA upregulation by (i) RNA half-life studies using a c-fos inducible promoter, and (ii) a variety of assays to determine pre-mRNA splicing efficiency. ^ Using these approaches, I have identified a region of TCR that is both necessary and sufficient to elicit (NMUP). I have also found that neither cytoplasmic translation machinery nor the protein UPF1 are involved in eliciting this nuclear event. I have shown that the NMUP can be induced not only by nonsense and frameshift mutations, but also missense mutations that disrupt a cis splicing element in the exon that contains the mutation. However, the effect of nonsense mutations on pre-mRNA is unique and distinguishable from that of missense mutations in that nonsense mutations can upregulate pre-mRNA in a frame-dependent manner. Lastly, I provide evidence that NMUP occurs by a mechanism in which nonsense mutations inhibit the splicing of introns. In summary, I have found that TCR precursor mRNAs are subject to multiple forces involving both RNA splicing and translation that can either increase or decrease the levels of these precursor mRNAs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternative RNA splicing is a critical process that contributes variety to protein functions, and further controls cell differentiation and normal development. Although it is known that most eukaryotic genes produce multiple transcripts in which splice site selection is regulated, how RNA binding proteins cooperate to activate and repress specific splice sites is still poorly understood. In addition how the regulation of alternative splicing affects germ cell development is also not well known. In this study, Drosophila Transformer 2 (Tra2) was used as a model to explore both the mechanism of its repressive function on its own pre-mRNA splicing, and the effect of the splicing regulation on spermatogenesis in testis. Half-pint (Hfp), a protein known as splicing activator, was identified in an S2 cell-based RNAi screen as a co-repressor that functions in combination with Tra2 in the splicing repression of the M1 intron. Its repressive splicing function is found to be sequence specific and is dependent on both the weak 3’ splice site and an intronic splicing silencer within the M1 intron. In addition we found that in vivo, two forms of Hfp are expressed in a cell type specific manner. These alternative forms differ at their amino terminus affecting the presence of a region with four RS dipeptides. Using assays in Drosophila S2 cells, we determined that the alternative N terminal domain is necessary in repression. This difference is probably due to differential localization of the two isoforms in the nucleus and cytoplasm. Our in vivo studies show that both Hfp and Tra2 are required for normal spermatogenesis and cooperate in repression of M1 splicing in spermatocytes. But interestingly, Tra2 and Hfp antagonize each other’s function in regulating germline specific alternative splicing of Taf1 (TBP associated factor 1). Genetic and cytological studies showed that mutants of Hfp and Taf1 both cause similar defects in meiosis and spermatogenesis. These results suggest Hfp regulates normal spermatogenesis partially through the regulation of taf1 splicing. These observations indicate that Hfp regulates tra2 and taf1 activity and play an important role in germ cell differentiation of male flies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure-function analysis of human Integrator subunit 4 Anupama Sataluri Advisor: Eric. J. Wagner, Ph.D. Uridine-rich small nuclear RNAs (U snRNA) are RNA Polymerase-II (RNAPII) transcripts that are ubiquitously expressed and are known to be essential for gene expression. snRNAs play a key role in mRNA splicing and in histone mRNA expression. Inaccurate snRNA biosynthesis can lead to diseases related to defective splicing and histone mRNA expression. Although the 3′ end formation mechanism and processing machinery of other RNAPII transcripts such as mRNA has been well studied, the mechanism of snRNA 3′ end processing has remained a mystery until the recent discovery of the machinery that mediates this process. In 2005, a complex of 14 subunits (the Integrator complex) associated with RNA Polymerase-II was discovered. The 14subunits were annotated Integrator 1-14 based on their size. The subunits of this complex together were found to facilitate 3′ end processing of snRNA. Identification of the Integrator complex propelled research in the direction of understanding the events of snRNA 3’end processing. Recent studies from our lab confirmed that Integrator subunit (IntS) 9 and 11 together perform the endonucleolytic cleavage of the nascent snRNA 3′ end to generate mature snRNA. However, the role of other members of the Integrator complex remains elusive. Current research in our lab is focused on deciphering the role of each subunit within the Integrator complex This work specifically focuses on elucidating the role of human Integrator subunit 4 (IntS4) and understanding how it facilitates the overall function of the complex. IntS4 has structural similarity with a protein called “Symplekin”, which is part of the mRNA 3’end processing machinery. Symplekin has been thoroughly researched in recent years and structure-function correlation studies in the context of mRNA 3’end processing have reported a scaffold function for Symplekin due to the presence of HEAT repeat motifs in its N-terminus. Based upon the structural similarity between IntS4 and Symplekin, we hypothesized that Integrator subunit 4 may be behaving as a Symplekin-like scaffold molecule that facilitates the interaction between other members of the Integrator Complex. To answer this question, the two important goals of this study were to: 1) identify the region of IntS4, which is important for snRNA 3′ end processing and 2) determine binding partners of IntS4 which promote its function as a scaffold. IntS4 structurally consists of a highly conserved N-terminus with 8 HEAT repeats, followed by a nonconserved C- terminus. A series of siRNA resistant N and C-terminus deletion constructs as well as specific point mutants within its N-terminal HEAT repeats were generated for human IntS4 and, utilizing a snRNA transcriptional readthrough GFP-reporter assay, we tested their ability to rescue misprocessing. This assay revealed a possible scaffold like property of IntS4. To probe IntS4 for interaction partners, we performed co-immunoprecipitation on nuclear extracts of IntS4 expressing stable cell lines and identified IntS3 and IntS5 among other Integrator subunits to be binding partners which facilitate the scaffold like function of hIntS4. These findings have established a critical role for IntS4 in snRNA 3′ end processing, identified that both its N and C termini are essential for its function, and mapped putative interaction domains with other Integrator subunits.