982 resultados para Atomic Decompositions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let K(r, s, t) denote the complete tripartite graph with partite sets of size r, s and t, where r less than or equal to s less than or equal to t. Let D be the graph consisting of a triangle with an edge attached. We show that K(r, s, t) may be decomposed into copies of D if and only if 4 divides rs + st + rt and t less than or equal to 3rs/(r + s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For all odd integers n greater than or equal to 1, let G(n) denote the complete graph of order n, and for all even integers n greater than or equal to 2 let G,, denote the complete graph of order n with the edges of a 1-factor removed. It is shown that for all non-negative integers h and t and all positive integers n, G, can be decomposed into h Hamilton cycles and t triangles if and only if nh + 3t is the number of edges in G(n). (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),..., c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and (i) - n(j) less than or equal to 1 for any i, j is an element of {1, 2,..., k}, then C is equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in C is equitably k-coloured. For m = 4,5 and 6, we completely settle the existence problem for equitably 3-colourable m-cycle decompositions of complete graphs and complete graphs with the edges of a 1-factor removed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of near-resonant holographic interferometry techniques for use on flows seeded with atomic species is described. A theoretical model for the refractivity that is due to the seed species is outlined, and an approximation to this model is also described that is shown to be valid for practical regimes of interest and allows the number density of the species to be determined without knowledge of line-broadening effects. The details of quantitative number density experiments performed on an air-acetylene flame are given, and a comparison with an alternative absorption-based experiment is made. (C) 2004 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theoretical analysis of three-dimensional (3D) matter-wave solitons and their stability properties in coupled atomic and molecular Bose-Einstein condensates (BECs). The soliton solutions to the mean-field equations are obtained in an approximate analytical form by means of a variational approach. We investigate soliton stability within the parameter space described by the atom-molecule conversion coupling, the atom-atom s-wave scattering, and the bare formation energy of the molecular species. In terms of ordinary optics, this is analogous to the process of sub- or second-harmonic generation in a quadratic nonlinear medium modified by a cubic nonlinearity, together with a phase mismatch term between the fields. While the possibility of formation of multidimensional spatiotemporal solitons in pure quadratic media has been theoretically demonstrated previously, here we extend this prediction to matter-wave interactions in BEC systems where higher-order nonlinear processes due to interparticle collisions are unavoidable and may not be neglected. The stability of the solitons predicted for repulsive atom-atom interactions is investigated by direct numerical simulations of the equations of motion in a full 3D lattice. Our analysis also leads to a possible technique for demonstrating the ground state of the Schrodinger-Newton and related equations that describe Bose-Einstein condensates with nonlocal interparticle forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),.. , c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar n(i) - n(j)vertical bar <= 1 for any i, j is an element of {1, 2,..., k}, then C is said to be equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in W is equitably k-coloured. For m = 3, 4 and 5 we completely settle the existence question for equitably 3-colourable m-cycle decompositions of complete equipartite graphs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-consistent theory is derived to describe the BCS-Bose-Einstein-condensate crossover for a strongly interacting Fermi gas with a Feshbach resonance. In the theory the fluctuation of the dressed molecules, consisting of both preformed Cooper pairs and bare Feshbach molecules, has been included within a self-consistent T-matrix approximation, beyond the Nozieres and Schmitt-Rink strategy considered by Ohashi and Griffin. The resulting self-consistent equations are solved numerically to investigate the normal-state properties of the crossover at various resonance widths. It is found that the superfluid transition temperature T-c increases monotonically at all widths as the effective interaction between atoms becomes more attractive. Furthermore, a residue factor Z(m) of the molecule's Green function and a complex effective mass have been determined to characterize the fraction and lifetime of Feshbach molecules at T-c. Our many-body calculations of Z(m) agree qualitatively well with recent measurments of the gas of Li-6 atoms near the broad resonance at 834 G. The crossover from narrow to broad resonances has also been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.