998 resultados para Atlantic plateau
Resumo:
The Early Albian Oceanic Anoxic Event 1b (OAE 1b) black shale is interrupted by one or more ventilation events that display significant changes in benthic and planktic populations. Within the OAE 1b sections studied, at ODP Site 1049, DSDP Site 545, and the Vocontian Basin, the benthic foraminiferal repopulation events last between ~500 and ~1,250 years and occur with a cyclicity of approximately 5.7 kyr. This period may represent an amplitude modulation of the precessional cycle. The OAE 1b sections from the marginal setting of the Vocontian Basin exhibit up to eight repopulation events. In contrast, there is only one repopulation event identified in the Atlantic OAE 1b sections from the Mazagan Plateau (DSDP 545) and Blake Nose (ODP 1049). Within the margin of dating uncertainties, this supraregional repopulation event occurred synchronously in the Vocontian Basin and the Atlantic Ocean. While the OAE 1b black shale formed under extremely warm and humid conditions, the repopulation events occurred during intervals of short-term cooling and reduced humidity at deep-water formation sites. The resulting increase in evaporation led to enhanced formation of low-latitude deep water, thus improving the ventilation of the sea floor.
Resumo:
Calcareous nannofossils from upper Campanian-lower Maestrichtian Deep Sea Drilling Project Leg 71 Cores 511-23 and 511-24 are described and correlated with assemblages of similar age from piston and drill cores on the Falkland Plateau, South Atlantic Ocean. The Leg 71 cores partially fill a drilling gap of at least 20 meters left within a thick (50 m) carbonate section first drilled by DSDP Leg 36 at Site 327. Cores 511-23 and 511-24 both fall within the upper portion of the Biscutum coronum Zone of Wind and demonstrate an overlap in the range of Monomarginatus quaternarius with the ranges of M. pectinatus, Misceomarginatus pleniporus, and Biscutum coronum across the Campanian/ Maestrichtian boundary. Resolution of the sequence of highest occurrence datums for the latter species must await the recovery of a more complete section. Comparison of the Site 511 assemblages with those from Mas Orcadas Core 07-75-44 to the north confirms earlier speculation that the Falkland Plateau served as an important boundary between major water masses during the Late Cretaceous.
Resumo:
Hysteresis measurements have been carried out on a suite of ocean-floor basalts with ages ranging from Quaternary to Cretaceous. Approximately linear, yet separate, relationships between coercivity (Bc) and the ratio of saturation remanence/saturation magnetization (Mrs/Ms) are observed for massive doleritic basalts with low-Ti magnetite and for pillow basalts with multi-domain titanomagnetites (with x= 0.6). Even when the MORB has undergone lowtemperature oxidation resulting in titanomaghemite, the parameters are still distinguishable, although offset from the trend for unoxidized multidomain titanomagnetite. The parameters for these iron oxides with different titanium content reveal contrasting trends that can be explained by the different saturation magnetizations of the mineral types. This plot provides a previously underutilized and non-destructive method to detect the presence of low-titanium magnetite in igneous rocks, notably MORB.
Resumo:
A lenticle of organic matter in a piece of dolomite rock embedded in Triassic sandy mudstone of Core 547B-35 (DSDP Leg 79) was identified as inertinite-rich coal by organic petrography and analytical pyrolysis. About 95% of the organic matter recognized under the microscope consists of pyrofusinite, degradofusinite, and inertodetrinite. Gaseous hydrocarbons evolved during pyrolysis are rich in methane and are characteristic of inertinitic material. The organic matter is suggested to be a piece of redeposited Permian Gondwana coal.
Resumo:
Strontium isotopic compositions of acetic acid (HOAc) leachate fractions of eight manganese oxide deposits from the modern seafloor, and of twenty-one buried manganese nodules from Cretaceous to Recent sediments in DSDP/ODP cores were measured. ratios of HOAc leachates in all modern seafloor manganese oxides of various origins are identical with present seawater. The ratios of the HOAc leachates of buried nodules from DSDP/ODP cores are significantly lower than those of nodules from the modern seafloor and are mostly identical with coeval seawater values estimated from the age of associated sediments. It is suggested that the buried nodules in DSDP/ODP cores are not artifacts transported from the present seafloor during the drilling process, but are in situ fossil deposits from the past deep-sea floor during Cretaceous to Quaternary periods. The formation of deep-sea fossil nodules prior to the formation of Antarctic Bottom Water (AABW) indicates that the circulation of oxygenated deep seawaters have activately deposited manganese oxides since the Eocene Epoch, or earlier.
Resumo:
Along the N-S-transect of DSDP-Sites 5446, 397, 141, and 366, oxygen and carbon isotopes, flux rates of calcium carbonate, terrigenous matter, and biogenic opal, clay minerals and the size distribution of terrigenous partictes were determined in order to assess the ties between atmospheric and oceanic surface and deep-water circulation off northwest Africa during the late Neogene. During the last 9 m.y., both the paleoceanography in the eastern Atlantic and west African paleodimates were intimately correlated with the evolution of the polar ice sheets as reflected in the benthos d18O curves of the 4 DSDP-Sites. These records make it possible to distinguish six major time intervals which were charaterized by long-term persistent regimes of climatic stability or climatic change. Short-term, "Milankovitch"-type cycles superimpose the long-term climatic evolution and may reflect the chronostratigraphic control fluctuations of the solar insolation persisting back to pre-Pleistocene times. Relatively stable, warm climates prevailed during the late Tortonian/early Messinean, 9 to 6 m.y., and the early Pliocene, 4.5 to 3.5 m.y. ago. Based on d18O curves, the amplitudes of short-term climatic variation were generally low, and the ice sheets were smaller than during peak Holocene time. Oceanic circulation and resulting paleoproductivity in upwelling zones were insignificant. The strength of dust supplying meridional trade winds was low (3 to 5 m/s), interglacial-style zonal winds near the ITCZ were dominant, as indicated by the high abundance of kaolinite. Phases of fluvial sediment supply were common. Humidity was characteristic of the climate in northwest Africa for the major part of this time. Major episodes of climatic deterioration in the subtropics occurred in the latest Miocene/early Pliocene, between some 5.6 and 5.2 and between 4.9 and 4.6 m.y. ago, in the late Pliocene, between 3.2 and 2.4 m.y. ago, and again in the Quaternary, near 1 m.y. ago. The episodes were correlated with marked increases of the global ice volume, as revealed by drastic increases of d18O values. They suggest sea-level falls of up to 70 m below the present sea level in the latest Miocene and earliest Pliocene and of 145 m in the latest Pliocene and Quaternary. The climatic changes resulted in strongly enhanced meridional trade winds as suggested by coarser terrigenous grain-sizes, increased mass accumulation rates of eolian dust, and changes in clay-mineral composition from dominantly kaolinite to illite and chlorite. The meridional trade winds reached speeds of 8 to 10 m/s with a maximum near 15 m/s. The enhanced winds probably led t o intensified coastal upwelling as shown by the contemporaneous local increase i n the deposition of biogenic silica and the local depletion of 13C at Site 397. The most drastic environmental changes near 2.4 and 1 m.y. ago coincide with hiatuses which may indicate phases of general erosion due to strongly enhanced deep-water circulation in the northeast At1antic along the northwest African continental margin. The occasional occurrence of quartz grains coarser than 250 µm may suggest ice-rafted debris in sediments off Morocco. During these time intervals the climate in NW-Africa was dominantly arid. Nevertheless, fluvial runoff (and humidity) continued to be important during intermittent warm phases of the short-term climatic cycles. During the end and the beginning of (inter-) glacial times, fluvial supply of nutrients seems to be the dominant factor, controling phases of enhanced paleoproductivity observed off northwest Africa, whereas during phases of glacial maximum strenger fertility of (increased) coastal upwelling becomes more important. A long-term evolution of paleoenvironments during the last 40 m.y. is depicted in the sediments of Site 366 and is clearly controlled by the plate tectonic route of this Site. During Oligocene times, Site 366 lay in the center of the equatorial upwelling, as shown by the high content of biogenic silica contributing up to 100 % of the carbonate-free sediment fraction >6 µm. The influence of equatorial upwelling abruptly terminated near 15 m.y. ago, a change in the record exaggerated by a hiatus of about 2 m.y. Prior to 25 m.y., the terrigenous input at the paleolatitude of Site 366 was restricted t o eolian sediment supply from South Africa by southeasterly trade winds, as shown by dominantly illite and chlorite in the clay fraction and extremely fine-grained terrigenous matter. Near the Oligocene/Miocene boundary, Site 366 drifted across the equator into the belt of the northeasterly trade winds, which is inferred from the increased content of kaolinite and coarser grain sizes of the terrigenous sediment fraction. The clay-mineral and grain-size compositions of Site 366 do not reflect a noteworthy northward shift of the ITCZ during late Miocene and early Pliocene times, i.e. no marked global circulation asymmetry due to the possible absence of a major Northern Hemisphere glaciation (Flohn 1981). This lack of a more northerly position of the ITCZ may result from a bipolar glaciation already existing during late Miocene times, such as also suggested by the evidence of tillites on Iceland and in southern Alaska during those intervals (e.g., Denton & Amstrong 1969, Mudie & Helgason 1983).
Resumo:
Future warming is predicted to shift the Earth system into a mode with progressive increase and vigour of extreme climate events possibly stimulating other mechanisms that invigorate global warming. This study provides new data and modelling investigating climatic consequences and biogeochemical feedbacks that happened in a warmer world ~112 Myr ago. Our study focuses on the Cretaceous Oceanic Anoxic Event (OAE) 1b and explores how the Earth system responded to a moderate ~25,000 yr lasting climate perturbation that is modelled to be less than 1 °C in global average temperature. Using a new chronological model for OAE 1b we present high-resolution elemental and bulk carbon isotope records from DSDP Site 545 from Mazagan Plateau off NW Africa and combine this information with a coupled atmosphere-land-ocean model. The simulations suggest that a perturbation at the onset of OAE 1b caused almost instantaneous warming of the atmosphere on the order of 0.3 °C followed by a longer (~45,000 yr) period of ~0.8 °C cooling. The marine records from DSDP Site 545 support that these moderate swings in global climate had immediate consequences for African continental supply of mineral matter and nutrients (phosphorous), subsequent oxygen availability, and organic carbon burial in the eastern subtropical Atlantic, however, without turning the ocean anoxic. The match between modelling results and stratigraphic isotopic data support previous studies [summarized in Jenkyns 2003, doi:10.1098/rsta.2003.1240] in that methane emission from marine hydrates, albeit moderate in dimension, may have been the trigger for OAE 1b, though we can not finally rule out alternative mechanisms. Following the hydrate mechanism a total of 1.15 * 10**18 g methane carbon (delta13C=-60 ?), equivalent to about 10% to the total modern gas hydrate inventory, generated the delta13Ccarb profile recorded in the section. Modelling suggests a combination of moderate-scale methane pulses supplemented by continuous methane emission at elevated levels over ~25,000 yr. The proposed mechanism, though difficult to finally confirm in the geological past, is arguably more likely to occur in a warmer world and apparently perturbs global climate and ocean chemistry almost instantaneously. This study shows that, once set-off, this mechanism can maintain Earth's climate in a perturbed mode over geological time leading to pronounced changes in regional climate.
Resumo:
Several studies suggest that, on a large scale, relief conditions influence the Atlantic Forest cover. The aim of this work was to explore these relationships on a local scale, in Caucaia do Alto, on the Ibiúna Plateau. Within an area of about 78 km2, the distribution of forest cover, divided into two successional stages, was associated with relief attribute data (slope, slope orientation and altitude). The mapping of the vegetation was based on the interpretation of stereoscopic pairs of aerial photographs, from April 2000, on a scale of 1:10,000, while the relief attributes were obtained by geoprocessing from digitalized topographic maps on a scale of 1:10,000. Statistical analyses, based on qui-square tests, revealed that there was a more extensive forest cover, irrespective of the successional stage, in steeper areas (>10 degrees) located at higher altitudes (>923 m), but no influence of the slope orientation. There was no sign of direct influence of relief on the forest cover through environmental gradients that might have contributed to the forest regeneration. Likewise, there was no evidence that these results could have been influenced by the distance from roads or urban areas or with respect to permanent preservation areas. Relief seems to influence the forest cover indirectly, since agricultural land use is preferably made in flatter and lower areas. These results suggest a general distribution pattern of the forest remnants, independent of the scale of study, on which relief indirectly has a strong influence, since it determines human occupation.
Resumo:
The muricate planktonic foraminiferal genera Morozovella and Acarinina were abundant and diverse during the upper Palaeocene to middle Eocene and dominated the tropical and subtropical assemblages. A significant biotic turnover in planktonic foraminifera occurred in the latest middle Eocene with a notable reduction in the acarininid lineage and the extinction of the morozovellids. These genera are extensively employed as palaeoclimatic and biostratigraphic markers and, therefore, this turnover episode is an important event in the record of the Cenozoic planktonic foraminifera. Sediments from the western North Atlantic (Ocean Drilling Program Site 1052) were examined in order to investigate these extinction events, in terms of both timing and mechanisms. Biostratigraphic events of the middle and late Eocene have been examined with a sampling resoluti on of approximately 3 kyr. These have been calibrated to the magneto- and astrochronology to accurately define the timing of key biostratigraphic events, particularly the extinction of Morozovella spinulosa which is a distinct biomarker for late middle Eocene sediments. High-resolution biostratigraphy reveals that the extinctions in the muricate group occurred in a stepwise form. The large acarininids (Acarinina praetopilensis) terminate 10 kyr prior to the extinction of M. spinulosa and small acarininids (Acarinina medizzai and Acarinina echinata) continue into the upper Eocene. High-resolution stable isotope analyses have been conducted on planktonic and benthic foraminifera from the western North Atlantic to reconstruct sea surface temperatures (SSTs) and deep water temperatures and the structure of the water column around this major biotic turnover. Whilst the extinctions of M. spinulosa and A. praetopilensis occur during a long-term cooling trend, the biotic turnover in the muricate group does not appear to be related to significant climatic change. Sea surface temperatures decrease slowly prior to the extinction events, and there is no evidence for a large-temperature shift associated with the faunal changes. The turnover event was therefore probably related to the increased surface water productivity and the deterioration of photosymbiotic partnerships with algae.