919 resultados para Arabidopsis-thaliana


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the molecular biological changes underlying the process of embryogenesis is important for the improvement of somatic embryogenesis of coconut. Among the transcription factors that control the transition from vegetative to embryogenic growth, members of APETALA2/Ethylene-responsive element binding protein domain family play an important role in promoting embryo development. Significant insights into the role of AP2 genes have been obtained by the ectopic expression of AP2 sub family genes in transgenic Arabidopsis. A homolog of the AINTEGUMENTA-like gene that encodes the two AP2 domains and the linker region was identified in the coconut genome. Phylogenetic analysis showed that this gene, CnANT, encodes a protein that branched with BABY BOOM/PLETHORA clade in the AINTEGUMENTA-like major clade and was similar to the oil palm EgAP2-1 protein. According to real time RT-PCR results, higher expression of CnANT was observed in more mature zygotic embryos. Also, high CnANT expression was recorded in embryogenic callus compared to other stages of somatic embryogenesis. We examined the effect of ectopic CnANT expression on the development and regenerative capacity of transgenic Arabidopsis. Overexpression of CnANT in Arabidopsis induced hormone free regeneration of explants. Furthermore, ectopic expression of CnANT enhanced regeneration in vitro and suggested a role for this gene in cell proliferation during in vitro culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigenetic regulations play important roles in plant development and adaptation to environmental stress. Recent studies from mammalian systems have demonstrated the involvement of ten-eleven translocation (Tet) family of dioxygenases in the generation of a series of oxidized derivatives of 5-methylcytosine (5-mC) in mammalian DNA. In addition, these oxidized 5-mC nucleobases have important roles in epigenetic remodeling and aberrant levels of 5-hydroxymethyl-29-deoxycytidine (5-HmdC) were found to be associated with different types of human cancers. However, there is a lack of evidence supporting the presence of these modified bases in plant DNA. Here we reported the use of a reversed-phase HPLC coupled with tandem mass spectrometry method and stable isotope-labeled standards for assessing the levels of the oxidized 5-mC nucleosides along with two other oxidatively induced DNA modifications in genomic DNA of Arabidopsis. These included 5- HmdC, 5-formyl-29-deoxycytidine (5-FodC), 5-carboxyl-29-deoxycytidine (5-CadC), 5-hydroxymethyl-29-deoxyuridine (5- HmdU), and the (59S) diastereomer of 8,59-cyclo-29-deoxyguanosine (S-cdG). We found that, in Arabidopsis DNA, the levels of 5-HmdC, 5-FodC, and 5-CadC are approximately 0.8 modifications per 106 nucleosides, with the frequency of 5-HmdC (per 5-mdC) being comparable to that of 5-HmdU (per thymidine). The relatively low levels of the 5-mdC oxidation products suggest that they arise likely from reactive oxygen species present in cells, which is in line with the lack of homologous Tetfamily dioxygenase enzymes in Arabidopsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flowering is controlled by several environmental and endogenous factors, usually associated with a complex network of metabolic mechanisms. The gene characterization in Arabidopsis model has provided much information about the genetic and molecular mechanisms that control flowering process. Some of these genes had been found in rice and maize. However, in sugarcane this processe is not well known. It is known that early flowering may reduce its production up to 60% at northeast conditions. Considering the impact of early flowering in sugarcane production, the aim of this work was to make the gene characterization of two cDNAs previously identified in subtractive cDNA libraries: scPKCI and scSHAGGY. The in silico analysis showed that these two cDNAs presented both their sequence and functional catalytic domains conserved. The results of transgenic plants containing the overexpression of the gene cassette scPKCI in sense orientation showed that this construction had a negative influence on the plant development as it was observed a decrease in plant height and leaf size. For the scPKCI overexpression in antisense orientation it was observed change in the number of branches from T1 transgenic plants, whereas transgenic T2 plants showed slow development during germination and initial stages of development. The other cDNA analyzed had homology to SHAGGY protein. The overexpression construct in sense orientation did not shown any effect on development. The only difference observed it was an increase in stigma structure. These results allowed us to propose a model how these two genes may be interact and affect floweringdevelopment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocotea catharinensis is a basal angiosperm and an endangered tree species from the Brazilian Atlantic Rain Forest. Despite its economical and ecological importance, mass-propagation of this species is hampered by seldom-produced short-lived seeds, and in vitro propagation is challenged by frequently malformed somatic embryos. Therefore, O. catharinensis somatic embryos are also a good experimental material to study the physiological and molecular mechanisms underlying in vitro morphogenesis. In an ongoing effort to characterize genes expressed during somatic embryogenesis of O. catharinensis we have cloned two Ocotea WUSCHEL-related genes. According to our RT-PCR data, both genes were preferentially expressed in embryogenic cell aggregates. One of them, OcWUS, is a possible ortholog of the Arabidopsis WUSCHEL (WUS) gene, which codes for a homeodomain-containing protein involved in the specification and maintenance of the shoot apical meristem. We analyzed the expression patterns of OcWUS and OcWOX4 by RT-PCR, and OcWUS expression was also assessed by in situ hybridization. The expression patterns of OcWUS were very similar to those described for the Arabidopsis WUS. OcWUS transcripts were generally restricted to a small group of cells in the center of the putative shoot apical meristem of O. catharinensis somatic embryos. Perturbed expression of OcWUS might be related to abnormally formed somatic embryos of O. catharinensis obtained through tissue culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to characterize the genome of the chromosome 1 of A.thaliana, a small flowering plants used as a model organism in studies of biology and genetics, on the basis of a recent mathematical model of the genetic code. I analyze and compare different portions of the genome: genes, exons, coding sequences (CDS), introns, long introns, intergenes, untranslated regions (UTR) and regulatory sequences. In order to accomplish the task, I transformed nucleotide sequences into binary sequences based on the definition of the three different dichotomic classes. The descriptive analysis of binary strings indicate the presence of regularities in each portion of the genome considered. In particular, there are remarkable differences between coding sequences (CDS and exons) and non-coding sequences, suggesting that the frame is important only for coding sequences and that dichotomic classes can be useful to recognize them. Then, I assessed the existence of short-range dependence between binary sequences computed on the basis of the different dichotomic classes. I used three different measures of dependence: the well-known chi-squared test and two indices derived from the concept of entropy i.e. Mutual Information (MI) and Sρ, a normalized version of the “Bhattacharya Hellinger Matusita distance”. The results show that there is a significant short-range dependence structure only for the coding sequences whose existence is a clue of an underlying error detection and correction mechanism. No doubt, further studies are needed in order to assess how the information carried by dichotomic classes could discriminate between coding and noncoding sequence and, therefore, contribute to unveil the role of the mathematical structure in error detection and correction mechanisms. Still, I have shown the potential of the approach presented for understanding the management of genetic information.