946 resultados para Ames assay
Resumo:
Cell culture and direct fluorescent antibody (DFA) assays have been traditionally used for the laboratory diagnosis of respiratory viral infections. Multiplex reverse transcriptase polymerase chain reaction (m-RT-PCR) is a sensitive, specific, and rapid method for detecting several DNIA and RNA viruses in a single specimen. We developed a m-RT-PCR assay that utilizes multiple virus-specific primer pairs in a single reaction mix combined with an enzyme-linked amplicon hybridization assay (ELAHA) using virus-specific probes targeting unique gene sequences for each virus. Using this m-RT-PCR-ELAHA, we examined the presence of seven respiratory viruses in 598 nasopharyngeal aspirate (NPA) samples from patients with suspected respiratory infection. The specificity of each assay was 100%. The sensitivity of the DFA was 79.7% and the combined DFA/culture amplified-DFA (CA-DFA) was 88.6% when compared to the m-RT-PCR-ELAHA. Of the 598 NPA specimens screened by m-RT-PCR-ELAHA, 3% were positive for adenovirus (ADM), 2% for influenza A (Flu A) virus, 0.3% for influenza B (Flu B) virus, 1% for parainfluenza type I virus (PIV1), 1% for parainfluenza type 2 virus (PIV2), 5.5% for parainfluenza type 3 virus (PIV3), and 21% for respiratory syncytial virus (RSV). The enhanced sensitivity, specificity, rapid result turnaround time and reduced expense of the m-RT-PCR-ELAHA compared to DFA and CA-DFA, suggests that this assay would be a significant improvement over traditional assays for the detection of respiratory viruses in a clinical laboratory.
Resumo:
Human polyomaviruses JCV and BKV can cause several clinical manifestations in immunocompromised hosts, including progressive multifocal leukoencephalopathy (PML) and haemorrhagic cystitis. Molecular detection by polymerase chain reaction (PCR) is recognised as a sensitive and specific method for detecting human polyomaviruses in clinical samples. In this study, we developed a PCR assay using a single primer pair to amplify a segment of the VP1 gene of JCV and BKV. An enzyme linked amplicon hybridisation assay (ELAHA) using species-specific biotinylated oligonucleotide probes was used to differentiate between JCV and BKV. This assay (VP1-PCR-ELAHA) was evaluated and compared to a PCR assay targeting the human polyomavirus T antigen gene (pol-PCR). DNA sequencing was used to confirm the polyomavirus species identified by the VP1-PCR-ELAHA and to determine the subtype of each JCV isolate. A total of 297 urine specimens were tested and human polyomavirus was detected in 105 specimens (35.4%) by both PCR assays. The differentiation of JCV and BKV by the VP1-PCR-ELAHA showed good agreement with the results of DNA sequencing. Further, DNA sequencing of the JCV positive specimens showed the most prevalent JCV subtype in our cohort was 2a (27%) followed by 1b (20%), 1a (15%), 2c (14%), 4 (14%) and 2b (10%). The results of this study show that the VP1-PCR-ELAHA is a sensitive, specific and rapid method for detecting and differentiating human polyomaviruses JC and BK and is highly suitable for routine use in the clinical laboratory. (C) 2004 Wiley-Liss, Inc.
Resumo:
The Roche Cobas Amplicor system is widely used for the detection of Neisseria gonorrhoeae but is known to cross react with some commensal Neisseria spp. Therefore, a confirmatory test is required. The most common target for confirmatory tests is the cppB gene of N. gonorrhoeae. However, the cppB gene is also present in other Neisseria spp. and is absent in some N. gonorrhoeae isolates. As a result, laboratories targeting this gene run the risk of obtaining both false-positive and false-negative results. In the study presented here, a newly developed N. gonorrhoeae LightCycler assay (NGpapLC) targeting the N. gonorrhoeae porA pseudogene was tested. The NGpapLC assay was used to test 282 clinical samples, and the results were compared to those obtained using a testing algorithm combining the Cobas Amplicor System (Roche Diagnostics, Sydney, Australia) and an in-house LightCycler assay targeting the cppB gene (cppB-LC). In addition, the specificity of the NGpapLC assay was investigated by testing a broad panel of bacteria including isolates of several Neisseria spp. The NGpapLC assay proved to have comparable clinical sensitivity to the cppB-LC assay. In addition; testing of the bacterial panel showed the NGpapLC assay to be highly specific for N. gonorrhoeae DNA. The results of this study show the NGpapLC assay is a suitable alternative to the cppB-LC assay for confirmation of N. gonorrhoeae-positive results obtained with Cobas Amplicor.
Resumo:
A double-site enzyme-linked lactate dehydrogenase enzyme inummodetection assay was tested against field isolates of Plasmodium falciparum for assessing in vitro drug susceptibilities to a wide range of antimalarial drugs. Its sensitivity allowed the use of parasite densities as low as 200 parasites/mul of blood. Being a nonisotopic, colorimetric assay, it lies within the capabilities of a modest laboratory at the district level.
Resumo:
With the implementation of programs to control lymphatic filariasis and soil-transmitted helminths using broad spectrum anthelmintics, including albendazole and ivermectin, there is a need to develop an in vitro assay for detection of drug resistance. This report describes an in vitro assay for measuring the effects of ivermectin and benzimidazoles on the motility of larvae of the hookworm species Ancylostoma ceylanicum, A. caninum, and Necator americanus, and Strongyloides species including Strongyloides stercoralis, and S. ratti. A dose-response relationship was demonstrated with each of the parasite species, with distinct differences observed between the various species. In pilot field testing of the assay with N. americanus larvae recovered from human fecal samples, a dose-response relationship was observed with ivermectin. While the assay has demonstrated the ability to determine drug responsiveness, its usefulness in resistance detection will require correlation with the clinical outcome among individuals infected with parasite strains showing different drug sensitivities.
Resumo:
The role of the therapeutic drug monitoring laboratory in support of immunosuppressant drug therapy is well established, and the introduction of sirolimus (SRL) is a new direction in this field. The lack of an immunoassay for several years has restricted the availability of SRL assay services. The recent availability of a CEDIA (R) SRL assay has the potential to improve this situation. The present communication has compared the CEDIA (R) SRL method with 2 established chromatographic methods, HPLC-UV and HPLC-MS/MS. The CEDIA (R) method, run on a Hitachi 917 analyzer, showed acceptable validation criteria with within-assay precision of 9.1% and 3.3%, and bias of 17.1% and 5.8%, at SRL concentrations of 5.0 mu g/L and 20 mu g/L, respectively. The corresponding between-run precision values were 11.5% and 3.3% and bias of 7.1% and 2.9% at 5.0 mu g/L and 20 mu g/L, respectively, The lower limit of quantification was found to be 3.0 mu g/L. A series of 96 EDTA whole-blood samples predominantly from renal transplant recipients were assayed by the 3 methods for comparison. It was found that the CEDIA (R) method showed a Deming regression line of CEDIA = 1.20 X HPLC-MS/MS - 0.07 (r = 0.934, SEE = 1.47), with a mean bias of 20.4%. Serial blood samples from 8 patients included in this evaluation showed that the CEDIA (R) method reflected the clinical fluctuations in the chromatographic methods, albeit with the variable bias noted. The CEDIA (R) method on the H917 analyzer is therefore a useful adjunct to SRL dosage individualization in renal transplant recipients.
Resumo:
The performances of the gelatin particle agglutination test (GPAT) and enzyme-linked immunosorbent assay (ELISA) for the diagnosis of strongyloidiasis with reference to the results of the agar plate culture technique (APCT) were evaluated with samples from 459 individuals from communities in northeast Thailand where strongyloidiasis is endemic. The prevalence of strongyloidiasis in five sample groups determined by GPAT varied between 29.3 and 61.5% (mean, 38.8%). ELISA and APCT, employed concurrently, gave lower prevalence rates of 27.5% (range, 21.6 to 42.1%) and 22.7% (range, 12.7 to 53.8%), respectively. By using APCT as the standard method, the sensitivity of GPAT was generally higher than that of ELISA (81 versus 73%). The specificity of GPAT was slightly lower than that of ELISA (74 versus 86%). The resulting GPAT titers exhibited positive linear relationships with the ELISA values (optical density at 490 nm) (P < 0.05), which suggests that the GPAT titer also reflects the levels of specific antibody comparable to those reflected by the ELISA values. Based on the relative ease and simplicity of use of the technique as well as the acceptable rates of sensitivity and specificity of the test, GPAT is more practical for screening for strongyloidiasis than the conventional ELISA.
Resumo:
Neisseria gonorrhoeae has well-characterized oxidative stress defense systems that protect against oxidative killing in in vitro assays. In contrast, mutant strains of N. gonorrhoeae lacking oxidative stress defenses are identical to the wild type when tested in an ex vivo survival assay using human polymorphonuclear leukocytes.
Resumo:
A phytotoxicity assay based on the ToxY-PAM dual-channel yield analyser has been developed and successfully incorporated into field assessments for the detection of phytotoxicants in water. As a means of further exploring the scope of the assay application and of selecting a model biomaterial to complement the instrument design, nine algal species were exposed to four chemical substances deemed of priority for water quality monitoring purposes (chlorpyrifos, copper, diuron and nonylphenol ethoxylate). Inter-species differences in sensitivity to the four toxicants varied by a factor of 1.9-100. Measurements of photosystem-II quantum yield using these nine single-celled microalgae as biomaterial corroborated previous studies which have shown that the ToxY-PAM dual-channel yield analyser is a highly sensitive method for the detection of PS-II impacting herbicides. Besides Phaeodactylum tricornutum, the previously applied biomaterial, three other species consistently performed well (Nitzschia closterium, Chlorella vulgaris and Dunaliella tertiolecta) and will be used in further test optimisation experiments. In addition to sensitivity, response time was evaluated and revealed a high degree of variation between species and toxicants. While most species displayed relatively weak and slow responses to copper, C. vulgaris demonstrated an IC10 of 51 μ g L-1, with maximum response measured within 25 minutes and inhibition being accompanied by a large decrease in fluorescence yield. The potential for this C vulgaris-based bioassay to be used for the detection of copper is discussed. There was no evidence that the standard ToxY-PAM protocol, using these unicellular algae species, could be used for the detection of chlorpyrifos or nonylphenol ethoxylate at environmentally relevant levels. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The appropriate use of wastes is a significant issue for the pig industry due to increasing pressure from regulatory authorities to protect the environment from pollution. Nitrogen contained in piggery pond sludge ( PPS) is a potential source of supplementary nutrient for crop production. Nitrogen contribution following the application of PPS to soil was obtained from 2 field experiments on the Darling Downs in southern Queensland on contrasting soil types, a cracking clay ( Vertosol) and a hardsetting sandy loam (Sodosol), and related to potentially mineralisable N from laboratory incubations conducted under controlled conditions and NO3- accumulation in the field. Piggery pond sludge was applied as-collected ( wet PPS) and following stockpiling to dry ( stockpiled PPS). Soil NO3- levels increased with increased application rates of wet and stockpiled PPS. Supplementary N supply from PPS estimated by fertiliser equivalence was generally unsatisfactory due to poor precision with this method, and also due to a high level of NO3- in the clay soil before the first assay crop. Also low recoveries of N by subsequent sorghum ( Sorghum bicolor) and wheat ( Triticum aestivum) assay crops at the 2 sites due to low in-crop rainfall in 1999 resulted in low apparent N availability. Over all, 29% ( range 12 - 47%) of total N from the wet PPS and 19% ( range 0 - 50%) from the stockpiled PPS were estimated to be plant-available N during the assay period. The high concentration of NO3- for the wet PPS application on sandy soil after the first assay crop ( 1998 barley, Hordeum vulgare) suggests that leaching of NO3- could be of concern when high rates of wet PPS are applied before infrequent periods of high precipitation, due primarily to the mineral N contained in wet PPS. Low yields, grain protein concentrations, and crop N uptake of the sorghum crop following the barley crop grown on the clay soil demonstrated a low residual value of N applied in PPS. NO3- in the sandy soil before sowing accounted for 79% of the variation in plant N uptake and was a better index than anaerobically mineralisable N ( 19% of variation explained). In clay soil, better prediction of crop N uptake was obtained when both anaerobically mineralisable N (39% of variation explained) and soil pro. le NO3- were used in combination (R-2 = 0.49).
Resumo:
There is a significant clinical need to identify novel ligands with high selectivity and potency for GABA(A), GABA(C) and glycine receptor Cl- channels. Two recently developed, yellow fluorescent protein variants (YFP-I152L and YFP-V163S) are highly sensitive to quench by small anions and are thus suited to reporting anionic influx into cells. The aim of this study was to establish the optimal conditions for using these constructs for high-throughput screening of GABA(A), GABA(C) and glycine receptors transiently expressed in HEK293 cells. We found that a 70% fluorescence reduction was achieved by quenching YFP-I152L with a 10 s influx of I- ions, driven by an extemal I- concentration of at least 50 mM. The fluorescence quench was rapid, with a mean time constant of 3 s. These responses were similar for all anion receptor types studied. We also show the assay is sufficiently sensitive to measure agonist and antagonist concentration-responses using either imaging- or photomultiplier-based detection systems. The robustness, sensitivity and low cost of this assay render it suited for high-throughput screening of transiently expressed anionic ligand-gated channels. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A novel phytotoxicity assay was incorporated into an environmental assessment of Hervey Bay and the Great Sandy Straits, to investigate the role of run-off associated herbicides in the deteriorated health of intertidal seagrass meadows. Dose response curves of common herbicides were performed and their toxicity equivalents elucidated to assist in analysis. The results of the assay were reproducible and corresponded strongly with results of chemical analyses. The incorporation of the assay into the assessment of surface waters added an important aspect to the study by allowing investigation of the toxicity of cumulative herbicide concentrations and yielding biologically relevant data. The highest herbicide concentration detected during the study was equivalent to 0.23 mu g 1(-1) diuron; a concentration known to inhibit photosynthetic efficiency of the assay biomaterial by approximately 3%. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Mounting concerns regarding the environmental impact of herbicides has meant a growing requirement for accurate, timely information regarding herbicide residue contamination of, in particular, aquatic systems. Conventional methods of detection remain limited in terms of practicality due to high costs of operation and the specialised information that analysis provides. A new phytotoxicity bioassay was trialled for the detection of herbicide residues in filter-purified (Milli-Q) as well as natural waters. The performance of the system, which combines solid-phase extraction (SPE) with the ToxY-PAM dual-channel yield analyser (Heinz Walz GmbH), was tested alongside the traditional method of liquid chromatography-mass spectrometry (LC-MS). The assay methodology was found to be highly sensitive (LOD 0.1 ng L-1 diuron) with good reproducibility. The study showed that the assay protocol is time effective and can be employed for the aquatic screening of herbicide residues in purified as well as natural waters.
Resumo:
A 5'-nuclease real-time reverse transcriptase-polymerase chain reaction assay was developed for the detection of influenza type A and was validated using a range of influenza A subtypes, including avian strains, and 126 nasopharyngeal aspirate samples. The results show the assay is suitable for screening for influenza A infections, particularly in regions where avian strains may be circulating. (c) 2005 Elsevier Inc. All rights reserved.