952 resultados para Aluminum -- Congresses
Resumo:
"Vaccines" prepared from parasites of an avirulent cultivated Y strain of T. cruzi, suspended in phenolated 1/10.000 saline solution, with aluminum stearate, containing alive parasites, gave high degree of protection to mice against a posterior infection with virulent blood forms of the same parasites and strain. The degree of protection with 1/1000 and 1/10.000 phenol "vaccines", with no alive parasites, was very poor specially in the first group. The immunity seems to be related to the number of alive trypanosomes in the "vaccines".
Resumo:
The results discussed in this thesis originated the following communications in International and National congresses: Sacramento JF, Coelho JC, Melo BF, Guarino MP and Conde SV. (2014) Assessment of caffeine dose and time of administration required for resetting insulin sensitivity in high sucrose diet in rats. 50th Meeting of EASD (European Association for the study of Diabetes), 14-19 September, Vienna, Austria Coelho JC, Melo BF, Sacramento JF, Guarino MP and Conde SV (2014). Establishing the caffeine dose that chronically restores insulin sensitivity in animal model of prediabetes. Fundação Astrazeneca Innovate Competition, iMed conference 6.0®, 10-12 October, Lisboa, Portugal Also, during the last year I was involved in other ongoing projects that originated the following communications: Coelho JC, Melo BF, Sacramento JF, Ribeiro MJ, Guarino MP and Conde SV (2014). Are the effects of carotid sinus nerve resection on insulin sensitivity mediated by an increase in Glut4 expression in skeletal muscle?. XLIV Reunião Anual da Sociedade Portuguesa de Farmacologia, XXXII Reunião de Farmacologia Clínica e XIII Reunião de Toxicologia, 5-7 February, Coimbra, Portugal Sacramento JF, Rodrigues T, Coelho JC, Matafome P, Ribeiro MJ, Seiça RM, Guarino MP, Conde SV (2014). Elucidating the mechanism by which carotid sinus nerve resection restores insulin sensitivity in pre-diabetes animal models. International Society for Arterial Chemoreception (ISAC) XIX University of Leeds, 29th June - 3rd July, Leeds, United Kingdom
Resumo:
Al-Cu alloys are widely used in the aerospace and automotive industries due to their high specific strength in some tempered conditions. However, due to poor corrosion and wear resistance, they are often anodized and/or painted. Plasma nitriding has been proposed as an alternative, though the developments in this technique are still in a recent stage for Al alloys. Electrical characterization techniques are well implemented NDTs in the industry because of good accuracy associated with lower cost, compared to other methods. Some, like eddy currents and 4-point probe techniques, are often used in coating inspection. The objective of this study was to perform Al nitriding at low temperatures to minimize the tempering initial condition damage and to assess the feasibility of eddy currents technique as a method for evaluating surface properties. The work developed can be divided in two stages. The first one was the process tuning, done at the Shibaura Institute of Technology, in Tokyo; and the second was the electrical characterization done in Faculdade de Ciências e Tecnologia, UNL. Low temperature nitriding of AA2011 alloy specimens was successfully achieved. Electrical conductivity results show that lift-off measurements by eddy currents testing can be related to surface properties.
Resumo:
The present paper reports the precipitation process of Al3Sc structures in an aluminum scandium alloy, which has been simulated with a synchronous parallel kinetic Monte Carlo (spkMC) algorithm. The spkMC implementation is based on the vacancy diffusion mechanism. To filter the raw data generated by the spkMC simulations, the density-based clustering with noise (DBSCAN) method has been employed. spkMC and DBSCAN algorithms were implemented in the C language and using MPI library. The simulations were conducted in the SeARCH cluster located at the University of Minho. The Al3Sc precipitation was successfully simulated at the atomistic scale with the spkMC. DBSCAN proved to be a valuable aid to identify the precipitates by performing a cluster analysis of the simulation results. The achieved simulations results are in good agreement with those reported in the literature under sequential kinetic Monte Carlo simulations (kMC). The parallel implementation of kMC has provided a 4x speedup over the sequential version.
Resumo:
An exterior body panel solution containing a polydicyclopentadiene skin attached to an interior metallic reinforcement through adhesive bonding is being studied to be applied in the MobiCar bonnet. With this solution is expected to achieve lightness, adequate structural integrity and cost-efficiency. However, there is uncertainty regarding to the bonnet adhesiveness since different metallic materials and adhesive types are being considered for its development. Thus, in this paper, several samples are tested through shear loading with the aim of understanding the loading magnitude expected by using polydicyclopentadiene, steel DC04+ZE and aluminum alloy AW5754-H111 as substrates adhesively bonded by an epoxy or a methacrylate. Methacrylate adhesive have shown greater shear strength in all types of adhesive joints. PDCPD joints presented the highest displacements. Surface degradation was considered adequate over abrading once none strength difference was seen between the different surface treatments. Steel treated by cataphoresis has shown the highest joint interface strength.
Resumo:
Polycrystalline AlN coatings deposited on Ti-electrodes films were sputtered by using nitrogen both as reactive gas and sputtering gas, in order to obtain high purity coatings with appropriate properties to be further integrated into wear resistance coatings as a piezoelectric monitoring wear sensor. The chemical composition, the structure and the morphology of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy techniques. These measurements show the formation of highly (101), (102) and (103) oriented AlN films with good piezoelectric and mechanical properties suitable for applications in electronic devices. Through the use of lower nitrogen flow a densification of the AlN coating occurs in the microstructure, with an improvement of the crystallinity along with the increase of the hardness. Thermal stability of aluminum nitride coatings at high temperature was also examined. It was found an improvement of the piezoelectric properties of the highly (10x) oriented AlN films which became c-axis (002) oriented after annealing. The mechanical behavior after heat treatment shows an important enhancement of the surface hardness and Young’s modulus, which decrease rapidly with the increase of the indentation depth until approach constant values close to the substrate properties after annealing. Thus, thermal annealing energy promotes not only the rearrangement of Al–N network, but also the occurrence of a nitriding process of unsaturated Al atoms which cause a surface hardening of the film.
Resumo:
In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlOx layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlOx(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlOx thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/ intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are 102 and 5 105 , respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análise Química
Resumo:
Tese de Doutoramento em Engenharia Biomédica.
Resumo:
Cylinder head casting; aluminum casting; inorganic bonded cores; vakuum; magnesium sulfate
Resumo:
Polycrystal viscoplasticity, Aluminum, Taylor model, Two-scale approach, Codf, Mises-Fisher distributions, Tensorial Fourier coefficients, Finite element method, Deep drawing, Earing, Yield stresses, R values
Resumo:
v. 62 (1972)