971 resultados para Altitude, maximum
Resumo:
anonym
Resumo:
The Departmento de Arica in northern Chile was chosen as the investigation site for a study of the role of certain hematologic and glycolytic variables in the physiological and genetic adaptation to hypoxia.^ The population studied comprised 876 individuals, residents of seven villages at three altitudes: coast (0-500m), sierra (2,500-3,500m) and altiplano (> 4,000m). There was an equal number of males and females ranging in ages from six to 90 years. Although predominantly Aymara, those of mixed or Spanish origin were also examined. The specimens were collected in heparinized vacutainers precipitated with cold trichloroacetic acid (TCA) and immediately frozen to -196(DEGREES)C. Six variables were measured. Three were hematologic: hemoglobin, hematocrit and mean cell hemoglobin concentration. The three others were glycolytic: erythrocyte 2,3-diphosphoglycerate (DPG), adenosine triphosphate (ATP) and the percentage of phosphates (DPG + ATP) in the form of DPG.^ Hemoglobin and hematocrit were measured on site. The DPG and ATP content was assayed in specimens which had been frozen at -196(DEGREES)C and transported to Houston. Structured interviews on site provided information as to lifestyle and family pedigrees.^ The following results were obtained: (1) The actual village, rather than the altitude, of examination accounted for the greatest proportion of the variance in all variables. In the coast, a large difference in levels of ionic lithium in the drinking water exists. The chemical environment of food and drink is postulated to account, in part, for the importance of geographic location in explaining the observed variance. (2) Measurements of individuals from the two extreme altitudes, coast and altiplano, did not exhibit the same relationship with age and body mass. The hematologic variables were significantly related to both age and body build in the coast. The glycolytic variables were significantly related to age and body mass in the altiplano. (3) The environment modified male values more than female values in all variables. The two sexes responded quite differently to age and changes in body mass as well. The question of differing adaptability of the two sexes is discussed. (4) Environmental factors explained a significantly higher proportion of total variability in the altiplano than in the coast for hemoglobin, hematocrit and DPG. Most of the ATP variability at both altitudes is explained by genetic factors. ^
Resumo:
The cruise with RV Tydeman was devoted to study permanently stratified plankton systems in the (sub)tropical ocean, which are characterised by a deep chlorophyll peak between 80 and 150 m. To minimise lateral effects by horizontal transport of nutrients and organic matter from river outflow and upwelling regions, stations were selected in the middle of the North Atlantic Ocean between the continents of America and Africa. (5 - 35° N and 50 - 15° W). Here the vertical distributions of light and nutrients control the abundance and growth of autotrophic algae in the thermically stratified water column. This phytoplankton is numerically dominated by the prokaryotic picoplankters Synechococcus spp. and Prochlorococcus spp., which are smaller than 2 ?m. The productivity of the 100 to 150 m deep euphotic zone can be high, because a high heterotrophic/autotrophic biomass ratio induces a rapid regeneration of nutrients and inorganic carbon. Primary grazers are mainly micro-organisms such as heterotrophic nannoflagellates and ciliates, which feed on the small algae and on bacteria. Heterotrophic bacteria can outnumber the autotrophic algae, because their number is related to the substrate pools of dissolved and particulate dead organic matter. These DOC and detritus pools reach equilibrium at a concentration, where the rate of their production (proportional to algal biomass) equals their mineralisation and sinking rate (proportional to the concentration and weight of POC and detritus). At a relatively low value of the weight-specific loss rates, the equilibrium concentration of these carbon pools and their load of bacteria can be high. The bacterial productivity is proportional to the mineralisation rate, which in a steady state can never be higher than the rate of primary production. Hence the ratio in turnover rate of bacteria and autotrophs tends to be reciprocally proportional to their biomass ratio.