809 resultados para All-optical signal processing
Resumo:
A bit level systolic array for computing the convolution operation is described. The circuit in question is highly regular and ideally suited to VLSI chip design. It is also optimized in the sense that all the cells contribute to the computation on each clock cycle. This makes the array almost four times more efficient than one which was previously described.
Resumo:
A bit-level systolic array system for performing a binary tree Vector Quantization codebook search is described. This consists of a linear chain of regular VLSI building blocks and exhibits data rates suitable for a wide range of real-time applications. A technique is described which reduces the computation required at each node in the binary tree to that of a single inner product operation. This method applies to all the common distortion measures (including the Euclidean distance, the Weighted Euclidean distance and the Itakura-Saito distortion measure) and significantly reduces the hardware required to implement the tree search system. © 1990 Kluwer Academic Publishers.
Resumo:
The design of a generic QR core for adaptive beamforming is presented. The work relies on an existing mapping technique that can be applied to a triangular QR array in such a way to allow the generation of a range of QR architectures. All scheduling of data inputs and retiming to include processor latency has been included within the generic representation.
Resumo:
Details are presented of the IRIS synthesis system for high-performance digital signal processing. This tool allows non-specialists to automatically derive VLSI circuit architectures from high-level, algorithmic representations, and provides a quick route to silicon implementation. The applicability of the system is demonstrated using the design example of a one-dimensional Discrete Cosine Transform circuit.
Resumo:
A rapid design methodology for biorthogonal wavelet transform cores has been developed. This methodology is based on a generic, scaleable architecture for the wavelet filters. The architecture offers efficient hardware utilization by combining the linear phase property of biorthogonal filters with decimation in a MAC based implementation. The design has been captured in VHDL and parameterized in terms of wavelet type, data word length and coefficient word length. The control circuit is embedded within the cores and allows them to be cascaded without any interface glue logic for any desired level of decomposition. The design time to produce silicon layout of a biorthogonal wavelet based system is typically less than a day. The resulting silicon cores produced are comparable in area and performance to hand-crafted designs. The designs are portable across a range of foundries and are also applicable to FPGA and PLD implementations.
Resumo:
Multiuser diversity (MUDiv) is one of the central concepts in multiuser (MU) systems. In particular, MUDiv allows for scheduling among users in order to eliminate the negative effects of unfavorable channel fading conditions of some users on the system performance. Scheduling, however, consumes energy (e.g., for making users' channel state information available to the scheduler). This extra usage of energy, which could potentially be used for data transmission, can be very wasteful, especially if the number of users is large. In this paper, we answer the question of how much MUDiv is required for energy limited MU systems. Focusing on uplink MU wireless systems, we develop MU scheduling algorithms which aim at maximizing the MUDiv gain. Toward this end, we introduce a new realistic energy model which accounts for scheduling energy and describes the distribution of the total energy between scheduling and data transmission stages. Using the fact that such energy distribution can be controlled by varying the number of active users, we optimize this number by either i) minimizing the overall system bit error rate (BER) for a fixed total energy of all users in the system or ii) minimizing the total energy of all users for fixed BER requirements. We find that for a fixed number of available users, the achievable MUDiv gain can be improved by activating only a subset of users. Using asymptotic analysis and numerical simulations, we show that our approach benefits from MUDiv gains higher than that achievable by generic greedy access algorithm, which is the optimal scheduling method for energy unlimited systems. © 2010 IEEE.
Resumo:
We present a study of the behavior of two different figures of merit for quantum correlations, entanglement of formation and quantum discord, under quantum channels showing how the former can, counterintuitively, be more resilient to such environments spoiling effects. By exploiting strict conservation relations between the two measures and imposing necessary constraints on the initial conditions we are able to explicitly show this predominance is related to build-up of the system-environment correlations.
Resumo:
The paper presents IPPro which is a high performance, scalable soft-core processor targeted for image processing applications. It has been based on the Xilinx DSP48E1 architecture using the ZYNQ Field Programmable Gate Array and is a scalar 16-bit RISC processor that operates at 526MHz, giving 526MIPS of performance. Each IPPro core uses 1 DSP48, 1 Block RAM and 330 Kintex-7 slice-registers, thus making the processor as compact as possible whilst maintaining flexibility and programmability. A key aspect of the approach is in reducing the application design time and implementation effort by using multiple IPPro processors in a SIMD mode. For different applications, this allows us to exploit different levels of parallelism and mapping for the specified processing architecture with the supported instruction set. In this context, a Traffic Sign Recognition (TSR) algorithm has been prototyped on a Zedboard with the colour and morphology operations accelerated using multiple IPPros. Simulation and experimental results demonstrate that the processing platform is able to achieve a speedup of 15 to 33 times for colour filtering and morphology operations respectively, with a reduced design effort and time.
Resumo:
Power dissipation and robustness to process variation have conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor upsizing for parametric-delay variation tolerance can be detrimental for power dissipation. However, for a class of signal-processing systems, effective tradeoff can be achieved between Vdd scaling, variation tolerance, and output quality. In this paper, we develop a novel low-power variation-tolerant algorithm/architecture for color interpolation that allows a graceful degradation in the peak-signal-to-noise ratio (PSNR) under aggressive voltage scaling as well as extreme process variations. This feature is achieved by exploiting the fact that all computations used in interpolating the pixel values do not equally contribute to PSNR improvement. In the presence of Vdd scaling and process variations, the architecture ensures that only the less important computations are affected by delay failures. We also propose a different sliding-window size than the conventional one to improve interpolation performance by a factor of two with negligible overhead. Simulation results show that, even at a scaled voltage of 77% of nominal value, our design provides reasonable image PSNR with 40% power savings. © 2006 IEEE.
Resumo:
Natural spider silk fibers have impressive mechanical properties (outperforming many man-made fibers) and are, moreover, biocompatible, biodegradable, and produced under benign conditions (using water as a solvent at ambient temperature). The problems associated with harvesting natural spider silks inspired us to devise a method to produce spider silk-like proteins biotechnologically (the first subject tackled in this highlight); we subsequently discuss their processing into various materials morphologies, and some potential technical and biomedical applications.
Resumo:
We report on the investigations of spin wave modes in arrays of densely packed Co nanorods using Brillouin light scattering. We have observed a significant role of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical-analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in the metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic metamaterials are important class of active metamaterials needed for prospective data storage and signal processing applications. (c) 2012 Optical Society of America
Resumo:
We report the investigations of spin wave modes of arrays of Ni and Co nanorods using Brillouin light scattering. We have revealed the significant influence of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical-analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in nanorod metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic artificial materials are important class of active metamaterials needed for prospective data storage and signal processing applications. © 2012 Elsevier B.V.
Resumo:
With security and surveillance, there is an increasing need to be able to process image data efficiently and effectively either at source or in a large data networks. Whilst Field Programmable Gate Arrays have been seen as a key technology for enabling this, they typically use high level and/or hardware description language synthesis approaches; this provides a major disadvantage in terms of the time needed to design or program them and to verify correct operation; it considerably reduces the programmability capability of any technique based on this technology. The work here proposes a different approach of using optimised soft-core processors which can be programmed in software. In particular, the paper proposes a design tool chain for programming such processors that uses the CAL Actor Language as a starting point for describing an image processing algorithm and targets its implementation to these custom designed, soft-core processors on FPGA. The main purpose is to exploit the task and data parallelism in order to achieve the same parallelism as a previous HDL implementation but avoiding the design time, verification and debugging steps associated with such approaches.
Resumo:
Social signals and interpretation of carried information is of high importance in Human Computer Interaction. Often used for affect recognition, the cues within these signals are displayed in various modalities. Fusion of multi-modal signals is a natural and interesting way to improve automatic classification of emotions transported in social signals. Throughout most present studies, uni-modal affect recognition as well as multi-modal fusion, decisions are forced for fixed annotation segments across all modalities. In this paper, we investigate the less prevalent approach of event driven fusion, which indirectly accumulates asynchronous events in all modalities for final predictions. We present a fusion approach, handling short-timed events in a vector space, which is of special interest for real-time applications. We compare results of segmentation based uni-modal classification and fusion schemes to the event driven fusion approach. The evaluation is carried out via detection of enjoyment-episodes within the audiovisual Belfast Story-Telling Corpus.