967 resultados para All plastic clean surface pumped supply


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the spatial distribution and source of the PCBs in surface sediments of the Southern Yellow Sea (SYS) and influencing factors, such as the sediment characteristics (components, relative proportions and total organic carbon contents), and hydrodynamic conditions were analyzed. PCB concentrations in the surface sediments ranged from 518-5848 pg/g, with average values of 1715 pg/g decreasing sharply compared to last year. In the study area, the PCB pollution level in the middle area was the highest, followed by that of the east coast and the west coast, respectively. Although the PCB level in the coastal areas was lower than that in the middle areas, it was proven in our study that the Yellow Sea obtained PCBs by virtue of river inputs. There was a positive and pertinent correlation between the clay proportion and PCB concentrations, and the increase of the PCB concentrations was directly proportional to the increase of TOC contents, with r = 0.61, but it was contrary to the sediment grain size. Consequently, the factors controlling PCB distribution had direct or indirect relationships with sediment grain size; moreover, the hydrodynamic conditions determined the sediment components and grain size. In conclusion, hydrodynamic conditions of the Yellow Sea were the most important influencing factors effecting the distribution of PCBs in the surface sediments of the SYS. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The area of the southwestern Nansha Trough is one of the most productive areas of the southern South China Sea. It is a typical semi-deep sea area of transition from shoal to abyssal zone. To understand distributions and roles of nitrogen forms involved in biogeochemical cycling in this area, contents of nitrogen in four extractable forms: nitrogen in ion exchangeable form (IEF-N), nitrogen in weak acid extractable form (WAEF-N), nitrogen in strong alkali extractable form (SAEF-N) and nitrogen in strong oxidation extractable form (SOEF-N), as well as in total nitrogen content (TN) in surface sediments were determined from samples collected from the cruise in April-May 1999. The study area was divided into three regions (A, B and C) in terms of clay sediment (< 4 mu m) content at < 40%, 40%-60% and > 60%, respectively. Generally, region C was the richest in the nitrogen of all forms and region A the poorest, indicating that the finer the grain size is, the richer the contents of various nitrogen are. The burial efficiency of total nitrogen in surface sediments was 28.79%, indicating that more than 70% of nitrogen had been released and participated in biogeochemical recycling through sediment-water interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A geochemical study of Bohai Bay surface sediments was carried out to analyze the potential harmful element (PHE: Ge, Mo, In, Sn, Sb,Te, Tl, Bi and V) concentrations, transportation and deposition, enrichment factors and sources. Germanium, Mo, In, Sn, Sb, Te, Tl, Bi and V concentrations in the surface sediments were: 1.43-1.71, 0.52-1.43, 0.04-0.12, 2.77-4.14, 1.14-2.29, 0.027-0.085, 0.506-0.770, 0.27-0.63 and 70.35-115.90 mu g/g, respectively. The distributions of total PHE concentrations, together with sequential extraction analyses, showed that the PHEs were mainly due to natural inputs from the continental weathering delivered to the bay by rivers and atmospheric transportation and deposition. However, high Mo, Sb, Te, Bi and V occurred in non-residual fractions, suggesting some anthropogenic inputs in addition to the natural inputs. Besides sources, the distributions of PHEs were influenced by the coupling of physical, chemical and biological processes. Enrichment factor (EF) was computed for each site for each element in order to assess the polluting elements and the degree of pollution at each site. Results revealed that the EFs were generally lower than 1.0, particularly for Ge, Mo, In, Sn, Tl and V; however, the EFs were higher (>1.5), particularly for Sb, Te and Bi, revealing moderate contamination. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An assessment of metal contamination in surface sediments of the Jiaozhou Bay, Qingdao, one of the rapidly developing coastal economic zones in China, is provided. Sediments were collected from 10 stations and a total of 15 heavy metals were analyzed. Concentrations of metals show significant variability and range from 210 to 620 ppm for Ti, 2.7 to 23 ppm for Ni, 4.2 to 28 ppm for Cu, 5.2 to 18 ppm for Pb, 12 to 58 ppm for Zn, 0.03 to 0.11 ppm for Cd, 5 to 51 ppm for Cr, 1.5 to 9.9 ppm for Co, 5.3 to 19 ppm for As, 12 to 32 ppm for Se, and 19 to 97 ppm for Sr. Based on concentration relationships and enrichment factor (EF) analyses, the results indicate that sediment grain size and organic matter played important roles in controlling the distribution of the heavy metals in surface sediments of the Jiaozhou Bay. The study shows that the sediment of the Jiaozhou Bay has been contaminated by heavy metals to various degrees, with prominent arsenic contributing the most to the contamination. The analysis suggests that the major sources of metal contamination in the Jiaozhou Bay are land-based anthropogenic ones, such as discharge of industrial waste water and municipal sewage and run-off. Notably, the elevated heavy metal concentrations of the Jiaozhou Bay sediments could have a significant impact on the bay's ecosystem. With the rapid economic development and urbanization around the Jiaozhou Bay, coastal management and pollution control should focus on these contaminant sources, as well as provide ongoing monitoring studies of heavy metal contamination within the bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable nitrogen isotope signatures of major sources of mineral nitrogen ( mineralization of soil organic nitrogen, biological N-2 fixation by legumes, annual precipitation and plant litter decomposition) were measured to relatively define their individual contribution to grass assimilation at the Haibei Alpine Meadow Ecosystem, Qinghai, China. The results indicated that delta N-15 values (- 2.40 parts per thousand to 0.97 parts per thousand) of all grasses were much lower than those of soil organic matter (3.4 +/- 0.18 parts per thousand) and mineral nitrogen ( ammonium and nitrate together,7.8 +/- 0.57 parts per thousand). Based on the patterns of stable nitrogen isotopes, soil organic matter (3.4 +/- 0.18 parts per thousand), biological N-2 fixation (0 parts per thousand), and precipitation (- 6.34 +/- 0.24 parts per thousand) only contributed to a small fraction of nitrogen requirements of grasses, but plant litter decomposition (- 1.31 +/- 1.01 parts per thousand) accounted for 67%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of nitrone, N-methyl nitrone, and their hydroxylamine tautomers (vinyl-hydroxylamine and N-methyl vinyl-hydroxylamine) on the reconstructed Si(100)-2 x 1 surface has been investigated by means of hybrid density functional theory (B3LYP) and Moller-Plesset second-order perturbation (MP2) methods. The calculations predicted that both of the nitrones should react with the surface dimer via facile concerted 1,3-dipolar cycloaddition leading to 5-member-ring compounds. The reaction of hydroxylamine tautomers on the Si(100) surface follows pi-complex (intermediate) mechanism. For the reaction of N-methyl vinyl-hydroxylamine, the pi-complex intermediate undergoes [2+2] cycloaddition leading to a 4-member-ring compound. But in the reaction of vinyl-hydroxylamine, the intermediate undergoes H-migration reaction ("ene" reaction) resulting in the oxime-terminated Si surface. All the surface reactions result in the hydroxyl-terminated silicon surfaces, which are very useful for the further modification of the semiconductor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper selected the Taklamakan Desert and the Badain Jaran Desert as the research areas, tested the carbonate content of surface-sand samples of dunes using Eijkelkamp carbonate goniophotometer, and analyzed the spatial-distribution characteristics of carbonate and estimated the carbonate-stock and secondary carbonate-stock in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Desert. In addition, the paper test XRD, SEM, TDA, stable carbon isotope and radioactive strontium isotope of lacustrine deposits in the Taklamakan Desert and carbonates, such as kunkar, root canal, lacustrine deposits, sinter and calcrete, in the Badain Jaran Desert. Resting on the achievements by our predecessors, it analyzed the mineral-composition differences of the carbonates, calculated the contents of secondary carbonate and, furthermore, evaluated their potential of sequestration of CO2 in the atmosphere. The overall goal of this study was to increase our understanding of soil carbonate in the context of carbon sequestration in the arid region in China. That is, to advance our understanding about whether or not secondary carbonate in desert is a sink for atmospheric CO2. The following viewpoints were obtained: 1 Carbonate contents of surface-sand samples decend from the south to the north of the Taklamakan Desert. The minimum lies in the south and the maxmum in the mid. Carbonate content of surface-sand of megadunes in the Badain Jaran Desert has low value generally in the dune-crest and the base of slope, and large value in the mid. The average of Carbonate contents of all sorts of collected samples in the same area of the Taklamakan Desert has small diffetences. The average is about 9%. 2 Using carbonate contents as key parameters, calculate the carbon-stock of carbonates in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Deser.They are 1.13Pg and 0.19 Pg respectively. There are 0.53Pg and 0.088Pg carbon-stock of secondary-carbonates in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Desert. 3 Through testing data from XRD (X-ray diffraction)and TAD ( Thermal Analysis Data), the most significant conclusion derived from is that the main mineral ingredient is calcite in different carbonate substances in arid regions, From the SEM(Scanning electron microscopy ) images, can obtains the information about the micro environment of different carbonate forms in which they can grow. 4 Selected gas by termal cracking and traditional phosphoric acid method, their δ13C show that δ13C is a good parameter to indicate the micro environment in which different secondary carbonate forms. From the δ13C of the same type samples, if the redeposit degree is hard, theδ13C is light, the redeposit degree is weak, the δ13C is heave. and the δ13C of the different type samples, δ13C is mainly controlled by the micro environment in which secondary formed. if the procedure is characterized by redeposit and dissolve of marine facies carbonate, δ13C is heavy, it is characterized by CO2 which produced by plant respiration,δ13C is light. 5 From the δ13C of lacustrine deposit in the different grain size, there exsit certain differences in their micro environment and secondary degree among different grain size in the same grade. 6 The secondary carbonate content of lacustrine deposits in Taklimakan Desert is 47.26%. And those of root canal, sinter, calcrete, kunkar, lacustrine deposit and surface sand in Badain Jaran Desert are 91.74%, 78.46%, 76.26%, 87.87%, 85.37%and 46.49%, respectively. Of different grain size samples, the secondary carbonate contents of coarse fraction (20-63μm), sub-coarse fraction (5-20μm) and fine fraction (<5μm) are 80.10%, 47.2%and 50.07%, respectively. 7 There is no obvious relevance betweenδ13C of secondary carbonate and the content of secondary carbonate,theδ13C of secondary carbonate mainly reflects the parameters of secondary process, the content of secondary carbonate reflects difference of secondary degree.. 8 Silicates potentially supply 3.4 pencent calcium source during forming process of lacustrine deposits in Taklimakan Desert. If calcium source is mainly supplied by goundwater, it can be calculated that about 5.18 %, 6.13%, 5.68%, 5.64 % and 6.82% silicates supply calcium source respectively for root canal, kunkar, lacustrine deposit, calcrete and sinter, during the forming process of different kinds of carbonates in Badain Jaran Desert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Groundwater basin is important for water supply in northern China. The paper took the Jingsheng Basin in Lingshi County, Shanxi Province as a case to study the basin groundwater system by numerical modeling. The hydrogeological characteristics were analysed basing on the field investigation, and a three-dimensional groundwater flow model was established to describe the groundwater flow system in the Jingsheng groundwater basin. The boundary of the model was determined by using geophysics and GIS data, and the lumped parameter model of runoff was used to depict the transform between the surface water and groundwater, and the groundwater dating data was used to calibrate the model. All these methods were used to improve the model. The Software Visual MODFLOW 2000 was applied to set up the numerical groundwater flow model. The groundwater flow pattern in the average year, the high-water year and the low-water year were simulated respectively by the model. Some new cognition to the groundwater movement in Jingsheng Basin was obtained in the paper. The difficult problems were resolved when using the conventional and theoretical analysis to forecast and appraise the exploitation of the groundwater, and supplies the instructional technology base for the reasonable exploitation and optimization collocation. The numerical model will improve evaluation of the basin groundwater resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are two major problems that have been concerned all the times, which are the mechanics characters of joint rock mass and the criterion for stability of engineering rock. Aim at the two problems, several works were conducted as follow: (1) Firstly, the mechanics characters of rock mass was studied by means of the Distinct Element Code. Subsequently, it was studied that the sensibility of joint surface roughness, strength of joint wall, joint stiffness ( i.e. tangential and normal stiffness) on the rock mass strength. (2) Based on the experimental rock mass classification methods of RMR and GSI, the program of “Parameters Calculation of the Rock Mass ” was developed. It has realized the rapid choice of rock mass parameters. (3) The concept of Representive Element Volume was induced based on the study of dimensional effect of rock mass. The Representive Element Volume of the horizontal and vertical pillar (ab. Two Pillars ) in the 2nd zone of Jinchuan mine were gained by the Geology Statistic Method and the Distinct Element Code. And then, the strength and deformatiom parameters of rock mass of the Two Pillars were obtained through numerical experiment. (4) From the confining depressure after thriaxial compression test of rock sample, it was concluded that the failure of rock is caused mainly by the lateral deformation and energy release happened during the confining depressure processure. The criterion of plastic energy catastrophe of rock engineering failure was proposed and validated. Subsquently, the stability of the horizontal pillar and Qianjiangping landslide in Three Gorges was judged by means of above-mentioned method. (5) Based on the fact there is a phenomenon of increasing energy concentration while the rock mass was compressed, rock information entropy (i.e. energy distribution entropy) was proposed. And it was revealed that there was change of energy distribution entropy while the rock mass was compressed to failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we examined the surface features of quartz grains, the quartz oxygen isotopic ratios and the mineralogical compositions of the loess - paleosol - red clay sediments systematically. The surface features of quartz grains do not show significant changes of the dust deposits through the past seven million years. The particles were mainly created in the process of glacial and frost weathering of high mountains. Then the surfaces were altered in some degree by the flood and wind abrasion. The surface features registered all these processes. The assemblages of surface features changed for four times in the past seven million years, the occurrence ages are: 5.0~4.2MaBP, about 3.6MaBP, about 2.6MaBP and about 0.9MaBP, respectively. This may indicate that there were uplift events of the Tibetan Plateau during those times. The oxygen isotopic compositions of quartz in the sediments represent the oxygen isotopic compositions of the initial dusts because of the stable properties of quartz both physically and chemically. The oxygen isotopic compositions of 4~16um quartz changed significantly at about 2.6MaBP, decreasing from about 19.5%o to about 18.5%o. This decrease of quartz oxygen isotopic ratio suggests that the environments of the dust source areas changed at that time, or the range of dust source area changed at that time. The environmental change may result from the structural evolution of the Tibetan Plateau and global cooling at that time. The coarse fractions (>30μm) of the dust deposits were examined using the EDXA device for mineral identification. The quartz content has a decrease trend during 7~2MaBP, then increase rapidly at about 2MaBP. After 2MaBP, quartz content continues to decrease. The Ca-plagioclase content / quartz content ratio increase at about 3.6MaBP. The ratio shows a peak of 3-6 fold values at about 2.5~1.8MaBP, the cause of this is still unknown. The Ca-plagioclase content / quartz content ratio continues to increase after 1 MaBP. The flowing can be regarded as the conclusion remarks of this study: Some of the red clay sediment of the Chinese Loess Plateau (at least Lingtai and Jingchuan red clays) is eolian in origin. The quartz grains from dust deposits throughout the past seven million yeas showed the clues of glacial and frost processes. This indicates that the high mountains of western China reached a certain altitude to favor the glacial and/or frost processes at least seven millions years before. The weathering intensities of the past seven nnillion yeas have a decreasing trend. In about 5~4.5MaBP, the weathering is relatively weak, and the dust supply is relatively low. At about 3.6MaBP and 2.6MaBP, the dust supply increased significantly. The mineralogical composition, the quartz surface feature and the quartz oxygen isotope composition were influenced by the uplift of the Tibetan Plateau. The Plateau may have reached a certain altitude to generate the arid regions of inland China and favor the glacial and frost weathering. And it underwent a phased uplift, which have uplift events at about 3.6MaBP and 2.6MaBP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turbidity sandstone reservoirs have been an important field of hydrocarbon exploration and development in the basins all over the world, as well as in China. Lithologic pools are composed of turbidity sandstones and other sandstones are frequently found in the Jiyang Depression that is a Mesozoic-Cenozoic non-marine oil-bearing basin. The Dongying Sag lies in the sedimentary center of the basin. The subtle traps with turbidity reservoirs are generally difficult to be predicted and described by using current techniques. The studies on turbidity reservoirs plays thus an important theoretical and theoretical practical role in exploration and development in the Jiyang Depression. The attention is, in this thesis, focused on the petrologic properties and oil accumulating behaviors in lake turbidity sedimentary systems in the middle part of the third section of Shahejie Formation in the Dongying Sag, especially in Dongxin area, which lies on the central uplift of the Sag. The paper has disclosed the origin types of turbidity sandstones, distribution pattern and controlling factors of turbidity sandstones, and set up hydrocarbon accumulation patterns of the middle part of the third section of Shahejie Formation in Dongxin, based on nonmarine high resolution sequence stratigraphy, event sedimentology and new theories of hydrocarbon forming. By studying prediction method and technology of turbidity sandstone reservoirs, using precise geological model developing, new techniques of high resolution seismic inversion constrained by logging, the paper has forecast low permeability turbidity sandstone reservoirs and pointed out advantage exploration aims to progressive exploration and development. The paper has obtained mainly many productions and acknowledges as follows: 1.Turbidity sandstone reservoirs of the third section of Shahejie Formationin Dongying Sag are formed in such specifical geological background as rift and extension of basin. The inherited Dongying delta and transgression make up many turbidity distribution areas by overlaying and joining together. The hydrocarbon migrates from depression area to adjacent turbidity sandstone continuously. Accumulation area which is sufficient in oil is formed. 2.The paper has confirmed distinguishable sign of sequence boundary , established stratigraphic framework of Dongying Sag and realized isotime stratigraphic correlation. Es3 of Dongying delta is divided into eleven stages. Among them, the second period of the lower section in Es3, the sixth period of the middle section in Es3, the third period of the upper section in Es3 correspond to eleven sedimentary isotime surface in seismic profile, namely Es3 is classified into eleven Formations. 3.According to such the features of turbidity sandstone as deep in burial, small in area, strong in subtle property, overlaying and joining together and occurring in groups, management through fault and space variations of restriction quantum are realized and the forecast precision of turbidity sandstone by using precise geological model developing, new techniques of high resolution seismic inversion constrained by logging, based on the analysis of all kinds of interwell seismic inversion techniques. 4.According to the features of low permeable turbidity sandstone reservoirs, new method of log interpretation model is put forward. At the same time, distinguish technology of familiar low resistivity oil layer in the turbidity sandstone reservoirs is studied based on petrophysical laboratory work and "four properties" interrelationship between lithological physical Jogging and bearing hydrocarbon properties. Log interpretation model and reservoir index interpretation model of low resistivity oil layer are set up. So the log interpretation precision is improved. 5.The evolution law and its difference of the turbidity sandstone are embodies as follows: the source of sediments come from the south and east of the study area in the middle period of Es3. East source of sediments is pushed from west to east. However, the south source supply of sediments in the early and middle period of Es3 is in full, especially in Es3. subsequently, the supply is decreased gradually. Turbidity fan moves back toward the south and the size of fan is minished accordingly. The characteristic of turbidity sandstone in Dongying Sag is different in different structural positions. Dongxin in the middle-east of the central lift and Niuzhuang Sag He in Dongying delta front and prodelta deep lake subfacies. Although the turbidity sandstone of the two areas root in the Dongying delta sedimentary system, the sand body has different remarkably characteristic. 6.The sedimentary model of the turbiditys in study area have three types as follows: (1) collapse turbidity fan in respect of delta; (2) fault trench turbidity fan; (3) other types of microturbidity sandstone. Middle fan and outer fan, can be found mainly in sublacustrine fan. Middle fan includes braided channel microfacies, central microfacies and braided interchannel microfacies, which is main prospecting oil-bearing subfacies. The middle section of the third section of Shahejie Formation in study area (for example the central lift) can be divided into middle-lower and upper part. The middle-lower part is characteristic of turbidity fan. The upper part is sedimented mainly by delta-collapse fan. 7.The turbidity reservoirs of the middle part of the third section of Shahejie Formation in study area characterize by low maturity both in component and texture, strong in diagenesis and low in permeability. The reservoir can be classified into four types. Type III is the body of reservoir and comprises two types of H a and HI b. M a belongs to middle porosity - low permeability reservoir and distributes in the central lift. Hlb belongs to low porosity - low permeability and distributes in Haojia region. 8.A11 single sand body of lens turbidity reservoir of the middle part of the third section of Shahejie Formation in study area are surrounded by thick dark source rocks. The oil-water system is complex and behaves that every sandstone is single seal unit. The water body is 1/3-1-5 of the sand body. The edge water is not active. The gas exists in the top of reservoir in the form of mixed gas. For far-range turbidity fan with big scale channel, the area and volume of sand body is large and the gap is big in oil packing degree. There are lots of edge water and bottom water, and the latter increases rapidly during the course of development. 9.By exerting the modern hydrocarbon forming theories, the third section of Shahejie Formation in study area belongs to abnormally pressured fluid compartment. The lithological reservoir of the third section of Shahejie Formation is formed in the compartment. The reservoir-formed dynamic system belongs to lower self-source enclosed type. The result and the practice indicate that the form and accumulation of lithological oil reservoirs are controlled by the temperature and pressure of stratum, microfacies, thickness of sand body, fault and reservoir heterogeneity. 10. Based on studies above, the emphases focus on in south and north part of Dongying structure, west Dongxin region and south part Xinzhen structure in the application of production. The practice proves that the turbidity sandstone reservoirs in Ying 11 block and the fault-lithological reservoirs in Xin 133 block have been obtained significant breakthrough. The next target is still sandstone groups of the third section of Shahejie Formation in the bordering areas of Dongxin region for instance Xin 149 area, He 89 area, Ying 8 area etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned of the I0Be and 26A1 exposure ages of bedrocks in the Grove Mountains (GMs), inland of East Antarctica, and in the Larsemann Hills, peripheral alongshore of East Antarctica, respectively. The results of our study indicate that the higher bedrock samples in two profiles in the GMs have minimum exposure ages of-2 Ma, and their 26Al/10Be can be projected into the erosion island, which means they only have simple exposure history. The actual exposure ages may be mid-late Pliocene because the bedrocks should have erosion. The relationship between the altitudes and cosmogenic nuclide concentrations of those higher samples suggests that they have not reached secular equilibrium, means that a higher than -2300m East Antarctic Ice Sheet (EAIS) existed in the GMs before mid-Pliocene, and decreased monotonously for a period since mid-Pliocene. Lower samples of the two profiles have much younger exposure ages, and had been covered at least once obviously implicated by that their 26Al/10Be are projected down to the erosion island. Using a 10Be-26Al project figure to determine the history of the GMs samples shows that the lower samples have minimum total initial exposure and cover time of 1.7-2.8Ma, suggesting that those samples were exposed initially since about late Pliocene too, and the interior EAIS fluctuated after late Plicoene obviously. The altitudes and exposure ages of all the GMs samples indicate that the ice surface level of the interior EAIS in the GMs was >2300m during or before mid Pliocene (more than 200m higher than present ice surface level), and only rose to -2200m during the fluctuation occurred after late Pliocene, thus the elevation of the interior EAIS in the GMs after mid-Pliocene was never higher than during or before mid Pliocene even during the Quaternary Glacial Maximum. According to data from the GMs and other parts of East Antarctica, a larger East Antarctic Ice Sheet existed before mid-Pliocene, thus the elevation decrease of interior EAIS in the GMs after mid Pliocene may be a director of volume decrease of the EAIS. Since the Antarctic climate has a cooling trend since ~3Ma, similar to the global climate change, the volume decrease of the EAIS since mid-Pliocene may beause of moisture supply decrease directly rather than atmosphere temperature change. As for the Larsemann Hills, samples farther to the glacier have exposure age of 40~50ka, means they exposed in the early time of Last Glacier Cycle, obviously earlier than the Last Glacial Maximum (LGM). Samples nearer to the glacier have exposure ages younger than LGM. Thus, different to the GMs, exposure ages of the Larsemann Hills samples have more obvious relationship to their distance from the glacier margin rather than to the altitudes of the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kela-2 gas field in Tarim Basin is the main supply source for West-to-East Pipeline project, also the largest abnormally-pressured gas field discovered in China currently. The geological characterization, fine geological modeling and field development plan are all the world-class difficult problems. This work includes an integrated geological and gas reservoir engineering study using advanced technology and approaches, the scientific development plan of Kela-2 gas field as well as the optimizations of the drilling, production and surface schemes. Then, it's expected that the Kela-2 gas field can be developed high-efficiently.Kuche depression is one part of the thrust belt of the South Tianshan Mountains, Kela-2 field is located at the Kelasu structural zone in the north of Kuche depression. The field territory is heavily rugged with deeply cut gullies, complex geological underground structure, variable rock types, thrust structure development. Therefore, considerable efforts have been made to develop an integrated technique to acquire, process and interpret the seismic data in complicated mountain region. Consequently a set of seismic-related techniques in the complicated mountain region has been developed and successfully utilized to interpret the structure of Kela-2 gas field.The main reservoir depositional system of Kela 2 gas field is a platform - fan delta - braided river system. The reservoir rocks are medium-fine and extremely fine grained sandstones with high structure maturity and low composition maturity. The pore system structure is featured by medium-small pore, medium-fine throat and medium-low assortment. The reservoir of Kela-2 gas field is characteristic of medium porosity and medium permeability. The pay zone is very thick and its lateral distribution is stable with a good connection of sand body. The overpressure is caused mainly by the strongly tectonic squash activities, and other factors including the later rapid raise and compartment of the high-pressure fluid, the injection of high-pressure fluid into the reservoir.Based on the deliverability tests available, the average binomial deliverability equation is provided applicable for the overall field. The experimental results of rock stress-sensitive tests are employed to analyze the change trend of petrophysical properties against net confining stress, and establish the stress-based average deliverability equation. The results demonstrate the effect of rock deformation on the deliverability is limited to less than 5% in the early period of Kela-2 gas field, indicating the insignificant effect on deliverability of rock deformation.In terms of the well pattern comparisons and development planning optimizations, it is recommended that the producers should be located almost linearly along the structural axis. A total of 9 producers have a stable gas supply volume of 10.76 BCMPY for 17 years. For Kela-2 gas field the total construction investment is estimated at ¥7,697,690,000 RMB with the internal earning rate of 25.02% after taxation, the net present value of ¥7,420,160,000 RMB and the payback period of 5.66 years. The high profits of this field development project are much satisfactory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoporous spinel membranes as ultrafiltration membranes were prepared through a novel sol-gel technique. By in situ modification of the sol particle surface during the sol-gel process, control of the material structure on a nanometer scale from the earliest stages of processing was realized. Nano-particles with a chocolate-nut-like morphology, i.e. spinel MgAl2O4 as a shell and gamma -Al2O3 as a core, were first revealed by HRTEM results. The formation of the spinel phase was confirmed by X-ray diffraction (XRD). N-2 adsorption-desorption results showed that the mesoporous membranes had a narrow pore size distribution. (C) 2001 Elsevier Science B.V. All rights reserved.