995 resultados para Alkaline media
Resumo:
Epoxy systems containing HTBN rubber material and reinforced with E-glass fibres, exposed to a fixed time duration in three separate media were subjected to compressive mode of deformation. The yield stress and fractographic features noted on the compression failed samples are reported in this work. The experiment reveals that the seawater exposed sample exhibits a drop in strength compared to dry (unexposed) sample. This kind of drop is maintained if the media is changed from seawater to distilled water. When HCl is included in seawater. the experiment shows a small rise in strength value. These changes have been attributed to various factors like medium ingress into samples assisting interface failure, the larger-sized Cl- influencing the extent of diffusion of medium into system and finally their participation in the deformation phenomena. The fractographic features reveal interface separations that show either scattered debris or a cleaner surface or display a whitish-coated matrix region depending on whether the tests are done on unexposed samples or on ones following the immersion in the media.
Resumo:
Absorption due to immersion in aqueous media consisting of either saline or seawater or due to exposure to water vapor conditions and the attendant effect on the compressive properties of syntactic foam reinforced with E-glass fibers in the form of chopped strands were studied. Whereas the compressive strength decreased in samples exposed to water vapor, the saline or seawater immersed samples showed increase when compared to the dry sample. The decrease in strength in the vapor-exposed case is ascribed to higher absorption of water and to debonding and damaged features for interfaces. The enhancement of strength values for the samples immersed in saltish media is traced to the larger size of the chloride ion and resultant changes in the stress state around the fiber-bearing regions. Recourse to an analysis of scanning electron microscopic pictures of the compression-failed samples is taken to explain the observed trends.
Resumo:
In this work, we have prepared Ag-nanorods using biscationic gemini surfactant micelles as the media by a seed-mediated wet synthesis method. Towards this end, we first synthesized Ag-nanoseeds of diameter similar to 7 nm stabilized by trisodium citrate (as the capping agent). Then these Ag-nanoseeds were used to synthesize Ag-nanorods of different aspect ratios. With decreasing Ag-nanoseed concentration, the aspect ratios of the Ag-nanorods stabilized by these gemini surfactants increased gradually. Various Ag-nanoseeds and Ag-nanospecies were characterized using UV-Vis spectroscopy (to know the surface plasmon bands), transmission electron microscopy (to find out their particle sizes and distribution), energy-dispersive X-ray spectroscopy and X-ray diffraction. When we used micelles derived from gemini surfactants of shorter spacer-(CH(2))(n)-(n = 2 or 4) to stabilize the Ag-nanorods, the lambda(max) of the longitudinal band shifted more towards the blue region compared to that of the gemini surfactant micelles with a longer spacer-(CH(2))(n)-(n = 5, 12) at a given amount of the Ag-nanoseed solution. So, the growth of Ag-nanorods in the gemini micellar solutions depends on the spacer-chain length of gemini surfactants employed.
Resumo:
Among the carbon allotropes, carbyne chains appear outstandingly accessible for sorption and very light. Hydrogen adsorption on calcium-decorated carbyne chain was studied using ab initio density functional calculations. The estimation of surface area of carbyne gives the value four times larger than that of graphene, which makes carbyne attractive as a storage scaffold medium. Furthermore, calculations show that a Ca-decorated carbyne can adsorb up to 6 H(2) molecules per Ca atom with a binding energy of similar to 0.2 eV, desirable for reversible storage, and the hydrogen storage capacity can exceed similar to 8 wt %. Unlike recently reported transition metal-decorated carbon nanostructures, which suffer from the metal clustering diminishing the storage capacity, the clustering of Ca atoms on carbyne is energetically unfavorable. Thermodynamics of adsorption of H(2) molecules on the Ca atom was also investigated using equilibrium grand partition function.
Resumo:
A majority of enzymes show a high degree of specificity toward a particular metal ion in their catalytic reaction. However, Type II restriction endonuclease (REase) R.KpnI, which is the first member of the HNH superfamily of REases, exhibits extraordinary diversity in metal ion dependent DNA cleavage. Several alkaline earth and transition group metal ions induce high fidelity and promiscuous cleavage or inhibition depending upon their concentration. The metal ions having different ionic radii and co-ordination geometries readily replace each other from the enzyme's active site, revealing its plasticity. Ability of R KpnI to cleave DNA with both alkaline earth and transition group metal ions having varied ionic radii could imply utilization of different catalytic site(s). However, mutation of the invariant His residue of the HNH motif caused abolition of the enzyme activity with all of the cofactors, indicating that the enzyme follows a single metal ion catalytic mechanism for DNA cleavage. Indispensability of His in nucleophile activation together with broad cofactor tolerance of the enzyme indicates electrostatic stabilization function of metal ions during catalysis. Nevertheless, a second metal ion is recruited at higher concentrations to either induce promiscuity or inhibit the DNA cleavage. Regulation of the endonuclease activity and fidelity by a second metal ion binding is a unique feature of R.KpnI among REases and HNH nucleases. The active site plasticity of R.KpnI opens up avenues for redesigning cofactor specificities and generation of mutants specific to a particular metal ion.
Resumo:
A new class of fluorinated gelators derived from bile acids is reported. Perfluoroalkyl chains were attached to the bile acids through two different ester linkages and were synthesized following simple transformations. The gelation property of these derivatives is a function of the bile acid moiety, the spacer and the fluoroalkyl chain length. By varying these parameters, gels were obtained in aromatic hydrocarbons, DMSO and DMSO/DMF-H(2)O mixtures of different proportions. Several derivatives of deoxycholic and lithocholic acids were found to be efficient organogelators, while the reported bile-acid based organogelators are mostly derived from the cholic acid moiety. The efficient gelators among these compounds formed gels well below 1.0% (w/v) and hence they can be termed as supergelators. The mechanical properties of these gels could be modulated by changing either the bile acid moiety or by varying the length of the fluoroalkyl segment. The presence of CO(2)-philic perfluoroalkyl groups is also expected to enhance their solubility in supercritical CO(2) and hence these compounds are promising candidates for making aerogels.
Resumo:
A new class of fluorinated gelators derived from bile acids is reported. Perfluoroalkyl chains were attached to the bile acids through two different ester linkages and were synthesized following simple transformations. The gelation property of these derivatives is a function of the bile acid moiety, the spacer and the fluoroalkyl chain length. By varying these parameters, gels were obtained in aromatic hydrocarbons, DMSO and DMSO/DMF-H(2)O mixtures of different proportions. Several derivatives of deoxycholic and lithocholic acids were found to be efficient organogelators, while the reported bile-acid based organogelators are mostly derived from the cholic acid moiety. The efficient gelators among these compounds formed gels well below 1.0% (w/v) and hence they can be termed as supergelators. The mechanical properties of these gels could be modulated by changing either the bile acid moiety or by varying the length of the fluoroalkyl segment. The presence of CO(2)-philic perfluoroalkyl groups is also expected to enhance their solubility in supercritical CO(2) and hence these compounds are promising candidates for making aerogels.
Thermal Weight Functions and Stress Intensity Factors for Bonded Dissimilar Media Using Body Analogy
Resumo:
In this study, an analytical method is presented for the computation of thermal weight functions in two dimensional bi-material elastic bodies containing a crack at the interface and subjected to thermal loads using body analogy method. The thermal weight functions are derived for two problems of infinite bonded dissimilar media, one with a semi-infinite crack and the other with a finite crack along the interface. The derived thermal weight functions are shown to reduce to the already known expressions of thermal weight functions available in the literature for the respective homogeneous elastic body. Using these thermal weight functions, the stress intensity factors are computed for the above interface crack problems when subjected to an instantaneous heat source.
Resumo:
Dendritic rnicroenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G(3)-C(5)G(3)). Dendrimers constituted with n-pentyl linker were found to afford higher solubilities of stilbene and azobenzene. Direct irradiation of trans-stilbene showed that C(5)G(3) and C(4)G(3) dendrimers afforded considerable phenanthrene formation, in addition to cis-stilbene, whereas C(3)G(3) and C(2)G(3) gave only cis-stilbene. An electron-transfer sensitized trans-cis isomerization, using cresyl violet perchlorate as the sensitizer, also led to similar results. Thermal isomerization of cis-azobenzene to trans-azobenzene within dendritic microenvironments revealed that the activation energy of the cis- to trans-isomer was increasing in the series C(5)G(3) < C(4)G(3) < C(3)G(3)
Resumo:
A single-step magnetic separation procedure that can remove both organic pollutants and arsenic from contaminated water is clearly a desirable goal. Here we show that water dispersible magnetite nanoparticles prepared by anchoring carboxymethyl-beta-cyclodextrin (CMCD) cavities to the surface of magnetic nanoparticles are suitable host carriers for such a process. Monodisperse, 10 nm, spherical magnetite, Fe3O4, nanocrystals were prepared by the thermal decomposition of FeOOH. Trace amounts of antiferromagnet, FeO, present in the particles provides an exchange bias field that results in a high superparamagnetic blocking temperature and appreciable magnetization values that facilitate easy separation of the nanocrystals from aqueous dispersions on application of modest magnetic fields. We show here that small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards As ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. The CMCD-Fe3O4 nanocrystals provide a versatile platform for magnetic separation with potential applications in water remediation.
Resumo:
Electrochemical deposition of Pd on conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode results in the formation of a stable dendritic film of Pd. In the absence of the PEDOT under-layer, Pd deposition is smooth and non-dendritic. Both Pd-PEDOT/C and Pd/C electrodes are studied for electrooxidation of 1,2-propanediol (PD) in an alkaline electrolyte. Owing to enhanced surface area and surface defects on dendritic Pd, the Pd-PEDOT/C electrode exhibits greater catalytic activity than the Pd/C electrode. Cyclic voltammetry studies suggest that peak current density increases with an increase in concentrations of PD and NaOH in the electrolyte. Repetitive cyclic voltammetry and amperometry studies indicate that Pd-PEDOT/C electrode possesses a high electrochemical stability with greater catalytic activity than Pd/C electrode toward electrooxidation of PD. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report the room temperature cell performance of alkaline direct methanol fuel cells (ADMFCs) with nitrogen-doped carbon nanotubes (NCNTs) as cathode materials. NCNTs show excellent oxygen reduction reaction activity and methanol tolerance in alkaline medium. The open-circuit-voltage (OCV) as well as the power density of ADMFCs first increases and then saturates with NCNT loading. Similarly, the OCV initially increases and reaches saturation with the increase in the concentration of methanol feed stock. Overall, NCNTs exhibit excellent catalytic activity and stability with respect to Pt based cathodes.
Resumo:
We present the selective sensing of multiple transition metal ions in water using a synthetic single probe. The probe is made up of pyrene and pyridine as signaling and interacting moiety, respectively. The sensor showed different responses toward metal ions just by varying the medium of detection. In organic solvent (acetonitrile), the probe showed selective detection of Hg2+ ion. In water, the fluorescence quenching was observed with three metal ions, Cu2+, Hg2+, and Ni2+. Further, just by varying the surface charge on the micellar aggregates, the probe could detect and discriminate the above-mentioned three different toxic metal ions appropriately. In neutral micelles (Brij 58), the probe showed a selective interaction with Hg2+ ion as observed in acetonitrile medium. However, in anionic micellar medium (sodium dodecyl sulfate, SDS), the probe showed changes with both Cu2+ and Ni2+. under UV-vis absorption spectroscopy. The discrimination between these two ions was achieved by recording their emission spectra, where it showed selective quenching with Cu2+.