941 resultados para Alkali activated
Studies on double selenates. I. Thermal decomposition of lanthanum and alkali metal double selenates
Resumo:
Thermogravimetry, differential thermal analysis and other methods of analysis have been used to study the decomposition of hydrated lanthanum and alkali metal double selenates up to 1300°C. The results showed slight variations in the initial temperature of the various intermediate decomposition stages of the double selenates, as compared with the initial temperature of the corresponding decomposition of the simple selenates. The results also permitted the suggestion of mechanisms of thermal decomposition of these compounds. © 1980.
Resumo:
The oxysulfide compounds La2O2S:Eu and Y2O2S were obtained directly from thermodecomposition of the respective oxalate compounds under argon and sulfur vapor, the obtained compounds were analyzed by infrared spectroscopy, X ray diffraction and luminescence spectroscopy. The particle size distribution and crystalline habit of the compounds were observed by scanning electron microscopy. Although the particle size of the oxysulfide was found to be 30%-40% smaller than the precursor oxalates, the initial morphology was completely maintained, which indicates the occurrence of a topochemical reaction from oxalates to oxysulfides. © Gauthier-Villars.
Resumo:
The anelastic spectrum (dynamic Young's modulus and elastic energy absorption) of La2CuO4+δ has been measured between 1 and 700 K with 0<δ<0.02. The spectrum of stoichiometric La2CuO4 in the low-temperature orthorhombic (LTO) phase is dominated by two intense relaxation processes which cause softenings of 16% around 150 K and 9% below 30 K at f∼1 kHz. The relaxation at 150 K is attributed to the presence of a fraction of the CuO6 octahedra which are able to change their tilted configuration by thermal activation between orientations which are nearly energetically equivalent, possibly within the twin boundaries. The relaxation below 30 K is governed by tunneling, and involves a considerable fraction of the lattice atoms. It is proposed that the double-well potentials for the low-temperature relaxation are created by the tendency of the LTO phase to form low-temperature tetragonal (LTT) domains, which however are not stabilized like when La is partially substituted with Ba. On doping with excess O, the relaxation rates of these processes are initially enhanced by hole doping, while their intensities are depressed by lattice disorder; an explanation of this behavior is provided. Excess O also causes two additional relaxation processes. The one appearing at lower values of δ is attributed to the hopping of single interstitial O2- ions, with a hopping rate equal to τ-1=2×10-14exp(-5600/T) s. The second process is slower and can be due to O pairs or other complexes containing excess O.
Resumo:
Barium titanate thick films were prepared from mechanically activated powders based on BaCO 3 and TiO 2. The thick films were screen-printed on alumina substrates electroded with Ag/Pd. The BT films were sintered at 850°C for 1 hour. The thickness was 30-75 μm depending of number of layers. The microstructure of thick films and the compatibility between BT layers and substrate was investigated by SEM. The dielectric properties were measured and the results were reported.
Resumo:
70SiO2 - 30HfO2 planar waveguides, activated by Er3+ concentration ranging from 0.3 to 1 mol%, were prepared by solgel route, using dip-coating deposition on silica glass substrates. The waveguides showed high densification degree, effective intermingling of the two components of the film, and uniform surface morphology. Propagation losses of about 1 dB/cm were measured at 632.8 nm. When pumped with 987 nm or 514.5 nm continuous-wave laser light, the waveguides showed the 4I 13/2→4I15/2 emission band with a bandwidth of 48 nm. The spectral features were found independent both on erbium content and excitation wavelength. The 4I13/2 level decay curves presented a single exponential profile, with a lifetime between 2.9-5.0 ms, depending on the erbium concentration.
Resumo:
Transparent glass ceramics containing β-PbF2:Er 3+ nanocrystals were obtained through appropriate thermal treatments of a glass of molar composition 60PbGeO3-10PbF2-30CdF 2 doped with 0.5 mol% Er3+. Their optical properties, as well as upconversion processes among erbium ions in the glass and glass ceramic matrix were studied. From absorption spectra, Judd-Ofelt parameters and radiative transition rates for several excited levels were calculated. Emission spectra in the visible and NIR regions were collected, and stimulated emission cross sections were obtained by McCumber theory for the 4F 13/2→4I15/2 transition at 1.5 μm. Red and green upconversion emissions were measured in glass and glass ceramics upon excitation at 980 nm; lifetimes were measured in order to assess the upconversion mechanisms.
Resumo:
Proteinase-activated receptor-2 (PAR2) is a G-protein-coupled receptor that mediates cellular responses to extracellular proteinases. Since PAR2 is expressed by oral epithelial cells, osteoblasts, and gingival fibroblasts, where its activation releases interleukin-8, we hypothesized that PAR2 activation may participate in periodontal disease in vivo. We investigated the role of PAR2 activation in periodontal disease in rats. Radiographic and enzymatic (myeloperoxidase) analysis revealed that topical application of PAR2 agonist causes periodontitis but also exacerbates existing periodontitis, leading to significant alveolar bone loss and gingival granulocyte infiltration. Inhibition of matrix metalloproteinase (MMP) and cyclo-oxygenase (COX) decreased PAR2 agonist-induced periodontitis. More specifically, the overexpression of COX-1, COX-2, MMP-2, and MMP-9 in gingival tissues suggests that they are involved in PAR 2-induced periodontitis. In conclusion, PAR2 agonist causes periodontitis in rats through a mechanism involving prostaglandin release and MMP activation. Inhibition of PAR2 may represent a novel approach to modulate host response in periodontitis.
Resumo:
The purpose of this study was to evaluate the effect of 5% sodium bicarbonate on the adherence of Candida albicans to thermally activated acrylic resin. Fifty 4 mm specimens of acrylic resin were obtained using a metallic matrix. The specimens received chemical polishing, were sterilized and then immersed in Sabouraud broth, inoculated with Candida albicans standardized suspension. After 24 hours of incubation at 37°C, the specimens were divided into four groups according to the substance used for disinfection (5% sodium bicarbonate, 0.12% digluconate chlorhexidine, vinegar and Corega Tabs). A control group was included, in which distilled water was used. The adhered microorganisms were dispersed, diluted and plated onto culture media to determine the number of colony-forming units (cfu/mL). The results were analyzed through the Mann-Whitney statistical test at the 5% level of significance. Only 0.12% digluconate chlorhexidine and 5% sodium bicarbonate presented a statistically significant difference (p = 0.0010 and p = 0.0156, respectively) compared to the control group, decreasing the number of cfu/mL. However, when the different disinfecting solutions were compared with each other, only 0.12% digluconate chlorhexidine presented a statistically significant difference in the reduction of cfu/mL. It was concluded that although 0.12% digluconate chlorhexidine was more effective in the reduction of Candida albicans adherence values to thermally activated acrylic resin, 5% sodium bicarbonate also proved to be a viable alternative.
Resumo:
This study measured the critical temperature reaching time and also the variation of temperature in the surface of the cervical region and within the pulp chamber of human teeth submitted to dental bleaching using 35% hydrogen peroxide gel activated by three different light sources. The samples were randomly divided into 3 groups (n = 15), according to the catalyst light source: Halogen Light (HL), High Intensity Diode Laser (DL), and Light Emmited Diode (LED). The results of temperature variation were submitted to the analysis of variance and Tukey test with p < 0.05. The temperature increase (mean value and standard deviation) inside the pulp chamber for the HL group was 6.8 ± 2.8°C; for the DL group was 15.3 ± 8.8°C; and for the LED group was 1.9 ± 1.0°C for. The temperature variation (mean value and standard deviation) on the tooth surface, for the group irradiated with HL was 9.1 ± 2.2°C; for the group irradiated with DL were 25.7 ± 18.9°C; and for the group irradiated with LED were 2.6 ± 1.4°C. The mean temperature increase values were significantly higher for the group irradiated with DL when compared with groups irradiated with HL and LED (p < 0.05). When applying the inferior limits of the interval of confidence of 95%, an application time of 38.7 s was found for HL group, and 4.4 s for DL group. The LED group did not achieve the critical temperatures for pulp or the periodontal, even when irradiated for 360 s. The HL and DL light sources may be used for dental bleaching for a short period of time. The LED source did not heat the target tissues significantly within the parameters used in this study. © 2010 Pleiades Publishing, Ltd.
Resumo:
To evaluate the bone healing of defects filled with particulate bone graft in combination with platelet-rich plasma (PRP), added with a mixture of calcium chloride and thrombin or just calcium chloride. Two 5-mm bone defects were created in the calvaria of 24 rabbits. Each defect was filled with particulate bone graft and PRP. In one defect the PRP was activated by a mixture of calcium chloride and thrombin; in the other, PRP was activated by calcium chloride only. The animals were euthanized 1, 2, 4, and 8 weeks after the surgeries, and the calvaria was submitted to histologic processing for histomorphometric analysis. The qualitative analysis has shown that both defects presented the same histologic characteristics so that a better organized, more mature, and well-vascularized bone tissue was noticed in the eighth week. A good bone repair was achieved using either the mixture of calcium chloride and thrombin or the calcium chloride alone as a restarting agent of the coagulation process.