940 resultados para Algae abundance
Resumo:
Strangford Lough, County Down holds internationally important numbers of wintering Pale-bellied Brent Geese Branta bernicla hrota with peak counts of up to 16 000. In the past, the Lough was also important for overwintering Wigeon Anas penelope with peak counts up to 20 000 in the early 1970s. However, this population has declined drastically with winter peaks at fewer than 2000 since the mid-1980s. As the overall flyway numbers of Wigeon have not fallen over this period, it has been suggested that the reasons for the decline are intrinsic to Strangford Lough. Wigeon did not decline uniformly throughout Strangford Lough. The greatest fall in numbers occurred on the northern mudflats suggesting a decline in carrying capacity. Factors responsible for this decline may include the reduction of Eelgrass Zostera spp. which is the main food of both species, and increases in human activity near and on the foreshore, especially in the case of Wigeon. Indirect interspecific interactions between Brent Geese and Wigeon are discussed as they may have been significant in reducing the numbers of Wigeon in the system.
Resumo:
Differential carbon abundances (based on the C II doublet at 6580 Angstrom) are presented for eight early type stars, towards the Galactic anti-centre. All the stars have similar atmospheric parameters with effective temperatures in the range 25000-29000 K and surface gravities between log g = 3.9-4.3 dex. The derived photospheric abundances vary by up to 0.6 dex, and with the exception of one star, RLWT-41, the differential abundances are found to be closely correlated with those of nitrogen. This implies that both elements may have been formed by similar mechanisms and that the lack of correlation between the nitrogen and oxygen abundances previously found in this sample is not directly due to CNO-processed core material being mixed to the stellar surface.
Resumo:
In a previous paper we have published observational data for 6 early B-type stars having, galactocentric distances of between 10 and 18 kpc. Using LTE line-blanketed model at mosphere techniques we derived their atmospheric parameters, finding that all our targets had similar effective temperatures and surface gravities. In the following study we additionally include two stars which have been presented previously (Rolleston et al. 1993) and found also to have compatible atmospheric parameters to the original programme stars. The homogeneity of this sample allows quantitative line-by-line differential abundance analyses to be carried out which should reliably detect variations in the chemical compositions of the stellar photospheres. We present differential abundances for eight stars, in either young open clusters or the field, with respect to an arbitrarily chosen standard which shows a normal abundance pattern. Our method of calculating distances from the derived atmospheric parameters means that the relative distance scale should be accurate.
Resumo:
Three species of introduced marine macroalgae are reported for Wellington Harbour (North Island, New Zealand). One of these, Polysiphonia senticulosa (Ceramiales, Rhodophyta) is illustrated from New Zealand for the first time, and the known distributional ranges of two species, Striaria attenuata (Dictyosiphonales, Phaeophyta) and Antithamnionella ternifolia (Ceramiales, Rhodophyta), are extended to the North Island.
Resumo:
Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context-dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context-dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non-trophic interactions based on empirical evidence must be incorporated into food web-based ecological models to improve understanding of community responses to global change.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.