996 resultados para Air filters.
Resumo:
This paper presents a heterogeneous reconfigurable system for real-time applications applying particle filters. The system consists of an FPGA and a multi-threaded CPU. We propose a method to adapt the number of particles dynamically and utilise the run-time reconfigurability of the FPGA for reduced power and energy consumption. An application is developed which involves simultaneous mobile robot localisation and people tracking. It shows that the proposed adaptive particle filter can reduce up to 99% of computation time. Using run-time reconfiguration, we achieve 34% reduction in idle power and save 26-34% of system energy. Our proposed system is up to 7.39 times faster and 3.65 times more energy efficient than the Intel Xeon X5650 CPU with 12 threads, and 1.3 times faster and 2.13 times more energy efficient than an NVIDIA Tesla C2070 GPU. © 2013 Springer-Verlag.
Resumo:
Flames propagating through a mixture with a gradient of equivalence ratio have been previously demonstrated to travel faster or slower than their equivalent premixed flames. The present study aims to numerically investigate the response of strained laminar methane-air flames to such gradients. The flames are simulated in a counterflow configuration where a premixed reactant stream at equivalence ratio φR opposes a hot equilibrium stream at equivalence ratio φP. Premixed and stratified flames are compared with respect to the equivalence ratio φ* and the corresponding gradient ∇φ* at the point of peak heat release rate, for three strain rates, a=50, 300 and 500s-1 and a range of φ*. The effect of different stratification levels is also investigated by varying the ratio of φP to φR, Θ. Results indicate that, as long as flames stabilize within the diffusion layer and Θ>1, increased heat release rate Q is seen throughout the progress variable space in comparison to the premixed state. In contrast, an attenuation of heat release rate is seen for Θ<1. The enhancement (or attenuation) of heat release varies monotonically with Θ. The effect of stratification on flame behavior becomes more pronounced as the strain rate increases. The present study reveals the mechanisms for the propagation of quasi-steady stratified flames under lean and rich conditions: stratified flames are primarily dominated by the diffusion of heat under lean conditions, and diffusion of H2 under rich conditions. Thanks to species and thermal support, stratified flames continue to burn beyond the premixed lean and rich flammability limits. Further investigation on the unsteady response of flames to the fluctuating equivalence ratio implies that the steady results represent the unsteady response well, as long as φ* and ∇φ* are similar in both steady and unsteady cases. © 2013 The Combustion Institute.
Resumo:
Increasing demand for energy and continuing increase in environmental as well as financial cost of use of fossil fuels drive the need for utilization of fuels from sustainable sources for power generation. Development of fuel-flexible combustion systems is vital in enabling the use of sustainable fuels. It is also important that these sustainable combustion systems meet the strict governmental emission legislations. Biogas is considered as one of the viable sustainable fuels that can be used to power modern gas turbines: However, the change in chemical, thermal and transport properties as well as change in Wobbe index due to the variation of the fuel constituents can have a significant effect on the performance of the combustor. It is known that the fuel properties have strong influence on the dynamic flame response; however there is a lack of detailed information regarding the effect of fuel compositions on the sensitivity of the flames subjected to flow perturbations. In this study, we describe an experimental effort investigating the response of premixed biogas-air turbulent flames with varying proportions of CH4 and CO2 to velocity perturbations. The flame was stabilized using a centrally placed conical bluff body. Acoustic perturbations were imposed to the flow using loud speakers. The flame dynamics and the local heat release rate of these acoustically excited biogas flames were studied using simultaneous measurements of OH and H2CO planar laser induced fluorescence. OH* chemiluminescence along with acoustic pressure measurements were also recorded to estimate the total flame heat release modulation and the velocity fluctuations. The measurements were carried out by keeping the theoretical laminar flame speed constant while varying the bulk velocity and the fuel composition. The results indicate that the flame sensitivity to perturbations increased with increased dilution of CH4 by CO2 at low amplitude forcing, while at high amplitude forcing conditions the magnitude of the flame response was independent of dilution.