870 resultados para Agent-Based Models
Resumo:
OBJECTIVE: Studies have shown that common single-nucleotide polymorphisms (SNPs) in the serotonin 5-HT-2C receptor (HTR2C) are associated with antipsychotic agent-induced weight gain and the development of behavioural and psychological symptoms. We aimed to analyse whether variation in the HTR2C is associated with obesity- and mental health-related phenotypes in a large population-based cohort. METHOD: Six tagSNPs, which capture all common genetic variation in the HTR2C gene, were genotyped in 4978 men and women from the European Prospective Investigation into Cancer (EPIC)-Norfolk study, an ongoing prospective population-based cohort study in the United Kingdom. To confirm borderline significant associations, the -759C/T SNP (rs3813929) was genotyped in the remaining 16 003 individuals from the EPIC-Norfolk study. We assessed social and psychological circumstances using the Health and Life Experiences Questionnaire. Genmod models were used to test associations between the SNPs and the outcomes. Logistic regression was performed to test for association of SNPs with obesity- and mental health- related phenotypes. RESULTS: Of the six HTR2C SNPs, only the T allele of the -759C/T SNP showed borderline significant associations with higher body mass index (BMI) (0.23 kg m(-2); (95% confidence interval (CI): 0.01-0.44); P=0.051) and increased risk of lifetime major depressive disorder (MDD) (Odds ratio (OR): 1.13 (95% CI: 1.01-1.22), P=0.02). The associations between the -759C/T and BMI and lifetime MDD were independent. As associations only achieved borderline significance, we aimed to validate our findings on the -759C/T SNP in the full EPIC-Norfolk cohort (n=20 981). Although the association with BMI remained borderline significant (beta=0.20 kg m(-2); 95% CI: 0.04-0.44, P=0.09), that with lifetime MDD (OR: 1.01; 95% CI: 0.94-1.09, P=0.73) was not replicated. CONCLUSIONS: Our findings suggest that common HTR2C gene variants are unlikely to have a major role in obesity- and mental health-related traits in the general population.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
Many chitosan biological activities depend on the interaction with biomembranes, but so far it has not been possible to obtain molecular-level evidence of chitosan action. In this article, we employ Langmuir phospholipid monolayers as cell membrane models and show that chitosan is able to remove beta-lactoglobulin (BLG) from negatively charged dimyristoyl phosphatidic acid (DMPA) and dipalmitoyl phosphatidyl glycerol (DPPG). This was shown with surface pressure isotherms and elasticity and PM-IRRAS measurements in the Langmuir monolayers, in addition to quartz crystal microbalance and fluorescence spectroscopy measurements for Langmuir-Blodgett (LB) films transferred onto solid substrates. Some specificity was noted in the removal action because chitosan was unable to remove BLG incorporated into neutral dipalmitoyl phosphatidyl choline (DPPC) and cholesterol monolayers and had no effect on horseradish peroxidase and urease interacting with DMPA. An obvious biological implication of these findings is to offer reasons that chitosan can remove BLG from lipophilic environments, as reported in the recent literature.
Resumo:
Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The structural, spectroscopic and theoretical study of cyclocreatine (1-carboxymethyl-2-iminoimidazolidine, CyCre) has been performed prompted by the biological relevance of the molecule and its potential role as a ligand in biometalic compounds. The crystal structure of CyCre has been determined by X-ray diffraction methods. The compound crystallizes as a zwitterion in the monoclinic system, space group P2(1)/c. The crystal is further stabilized by a network of N-H center dot center dot center dot O bonds. Infrared and Raman spectra of the solid, electronic spectra of aqueous solutions at different pH values and (1)H and (13)C NMR spectra have been recorded and analyzed. Band assignments were accomplished with the help of theoretical calculations. Optimized molecular geometries, harmonic vibrational frequencies and molecular electrostatic potentials were calculated using methods based on the density functional theory. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Planning to reach a goal is an essential capability for rational agents. In general, a goal specifies a condition to be achieved at the end of the plan execution. In this article, we introduce nondeterministic planning for extended reachability goals (i.e., goals that also specify a condition to be preserved during the plan execution). We show that, when this kind of goal is considered, the temporal logic CTL turns out to be inadequate to formalize plan synthesis and plan validation algorithms. This is mainly due to the fact that the CTL`s semantics cannot discern among the various actions that produce state transitions. To overcome this limitation, we propose a new temporal logic called alpha-CTL. Then, based on this new logic, we implement a planner capable of synthesizing reliable plans for extended reachability goals, as a side effect of model checking.
Resumo:
Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Resumo:
The rates of oximolysis of p-nitrophenyl diphenyl phosphate (PNPDPP) by Acetophenoxime; 10-phenyl-10-hydi-oxyiminodecanoic acid; 4-(9-carboxynonanyl)-1-(9-carboxy-1-hydroyiminononanyl) benzene; 1-dodecyl-2-[(hydroxyimino)methyl]-pyridinium chloride (IV) and N-methylpyridinium-2-aldoxime chloride were determined in micelles of N-hexadecyl-N,N,N-trimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethylammonium propanesulfonate and dioctadecyldimethylammonium chloride (DODAC) vesicles. The effects of CTAC micelles and DODAC vesicles on the rates of oxymolysis of O,O-Diethyl O-(4-nitrophenyl) phosphate (paraoxon) by oxime IV were also determined. Analysis of micellar and vesicular effects on oximolysis of PNPDPP, using pseudophase or pseudophase with explicit consideration of ion exchange models, required the determination of the aggregate`s effects on the pK(a), of oximes and on the rates of PNPDPP hydrolysis. All aggregates increased the rate of oximolysis of PNPDPP and the results were analyzed quantitatively. In particular, DODAC vesicles catalyzed the reaction and increased the rate of oximolysis of PNPDPP by IV several million fold at pH`s compatible with pharmaceutical formulations. The rate increase produced by DODAC vesicles on the rate of oximolysis paraoxon by IV demonstrates the pharmaceutical potential of this system, since the substrate is used as an agricultural defensive agent and the surfactant is extensively employed in cosmetic formulations. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:1040-1052, 2009
Predictive models for chronic renal disease using decision trees, naïve bayes and case-based methods
Resumo:
Data mining can be used in healthcare industry to “mine” clinical data to discover hidden information for intelligent and affective decision making. Discovery of hidden patterns and relationships often goes intact, yet advanced data mining techniques can be helpful as remedy to this scenario. This thesis mainly deals with Intelligent Prediction of Chronic Renal Disease (IPCRD). Data covers blood, urine test, and external symptoms applied to predict chronic renal disease. Data from the database is initially transformed to Weka (3.6) and Chi-Square method is used for features section. After normalizing data, three classifiers were applied and efficiency of output is evaluated. Mainly, three classifiers are analyzed: Decision Tree, Naïve Bayes, K-Nearest Neighbour algorithm. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. Efficiency of Decision Tree and KNN was almost same but Naïve Bayes proved a comparative edge over others. Further sensitivity and specificity tests are used as statistical measures to examine the performance of a binary classification. Sensitivity (also called recall rate in some fields) measures the proportion of actual positives which are correctly identified while Specificity measures the proportion of negatives which are correctly identified. CRISP-DM methodology is applied to build the mining models. It consists of six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.
Resumo:
Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.
Resumo:
While there has been much work on developing frameworks and models of norms and normative systems, consideration of the impact of norms on the practical reasoning of agents has attracted less attention. The problem is that traditional agent architectures and their associated languages provide no mechanism to adapt an agent at runtime to norms constraining their behaviour. This is important because if BDI-type agents are to operate in open environments, they need to adapt to changes in the norms that regulate such environments. In response, in this paper we provide a technique to extend BDI agent languages, by enabling them to enact behaviour modification at runtime in response to newly accepted norms. Our solution consists of creating new plans to comply with obligations and suppressing the execution of existing plans that violate prohibitions. We demonstrate the viability of our approach through an implementation of our solution in the AgentSpeak(L) language.