915 resultados para Aerospace Medicine
Resumo:
A theory is developed of an electrostatic probe in a fully-ionized plasma in the presence of a strong magnetic field. The ratio of electron Larmor radius to probe transverse dimension is assumed to be small. Poisson's equation, together with kinetic equations for ions and electrons are considered. An asymptotic perturbation method of multiple scales is used by considering the characteristic lengths appearing in the problem. The leading behavior of the solution is found. The results obtained appear to apply to weaker fields also, agreeing with the solutions known in the limit of no magnetic field. The range of potentials for wich results are presented is limited. The basic effects produced by the field are a depletion of the plasma near the probe and a non-monotonic potential surrounding the probe. The ion saturation current is not changed but changes appear in both the floating potential Vf and the slope of the current-voltage diagram at Vf. The transition region extends beyond the space potential Vs,at wich point the current is largely reduced. The diagram does not have an exponential form in this region as commonly assumed. There exists saturation in electron collection. The extent to which the plasma is disturbed is determined. A cylindrical probe has no solution because of a logarithmic singularity at infinity. Extensions of the theory are considered.
Resumo:
Pié de imp. tomado de colofón
Resumo:
Polymer/inorganic nanoparticle nanocomposites have garnered considerable academic and industrial interest over recent decades in the development of advanced materials for a wide range of applications. In this respect, the dispersion of so-called inorganic fullerene-like (IF) nanoparticles, e.g., tungsten disulfide (IF-WS2) or molybdenum disulfide (IF-MoS2), into polymeric matrices is emerging as a new strategy. The surprising properties of these layered metal dichalcogenides such as high impact resistance and superior tribological behavior, attributed to their nanoscale size and hollow quasi-spherical shape, open up a wide variety of opportunities for applications of these inorganic compounds. The present work presents a detailed overview on research in the area of IF-based polymer nanocomposites, with special emphasis on the use of IF-WS2 nanoparticles as environmentally friendly reinforcing fillers. The incorporation of IF particles has been shown to be efficient for improving thermal, mechanical and tribological properties of various thermoplastic polymers, such as polypropylene, nylon-6, poly(phenylene sulfide), poly(ether ether ketone), where nanocomposites were fabricated by simple melt-processing routes without the need for modifiers or surfactants. This new family of nanocomposites exhibits similar or enhanced performance when compared with nanocomposites that incorporate carbon nanotubes, carbon nanofibers or nanoclays, but are substantially more cost-effective, efficient and environmentally satisfactory. Most recently, innovative approaches have been described that exploit synergistic effects to produce new materials with enhanced properties, including the combined use of micro- and nanoparticles such as IF-WS2/nucleating agent or IF-WS2/carbon fiber, as well as dual nanoparticle systems such as SWCNT/IF-WS2 where each nanoparticle has different characteristics. The structure–property relationships of these nanocomposites are discussed and potential applications proposed ranging from medicine to the aerospace, automotive and electronics industries.
Resumo:
Airbus designs and industrializes aircrafts using Concurrent Engineering techniques since decades. The introduction of new PLM methods, procedures and tools, and the need to reduce time-to-market, led Airbus Military to pursue new working methods. Traditional Engineering works sequentially. Concurrent Engineering basically overlaps tasks between teams. Collaborative Engineering promotes teamwork to develop product, processes and resources from the conceptual phase to the start of the serial production. The CALIPSO-neo pilot project was launched to support the industrialization process of a medium size aerostructure. The aim is to implement the industrial Digital Mock-Up (iDMU) concept and its exploitation to create shop floor documentation. In a framework of a collaborative engineering strategy, the project is part of the efforts to deploy Digital Manufacturing as a key technology for the industrialization of aircraft assembly lines. This paper presents the context, the conceptual approach and the methodology adopted.
Resumo:
Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare.
Resumo:
En los últimos años ha habido un gran aumento de fuentes de datos biomédicos. La aparición de nuevas técnicas de extracción de datos genómicos y generación de bases de datos que contienen esta información ha creado la necesidad de guardarla para poder acceder a ella y trabajar con los datos que esta contiene. La información contenida en las investigaciones del campo biomédico se guarda en bases de datos. Esto se debe a que las bases de datos permiten almacenar y manejar datos de una manera simple y rápida. Dentro de las bases de datos existen una gran variedad de formatos, como pueden ser bases de datos en Excel, CSV o RDF entre otros. Actualmente, estas investigaciones se basan en el análisis de datos, para a partir de ellos, buscar correlaciones que permitan inferir, por ejemplo, tratamientos nuevos o terapias más efectivas para una determinada enfermedad o dolencia. El volumen de datos que se maneja en ellas es muy grande y dispar, lo que hace que sea necesario el desarrollo de métodos automáticos de integración y homogeneización de los datos heterogéneos. El proyecto europeo p-medicine (FP7-ICT-2009-270089) tiene como objetivo asistir a los investigadores médicos, en este caso de investigaciones relacionadas con el cáncer, proveyéndoles con nuevas herramientas para el manejo de datos y generación de nuevo conocimiento a partir del análisis de los datos gestionados. La ingestión de datos en la plataforma de p-medicine, y el procesamiento de los mismos con los métodos proporcionados, buscan generar nuevos modelos para la toma de decisiones clínicas. Dentro de este proyecto existen diversas herramientas para integración de datos heterogéneos, diseño y gestión de ensayos clínicos, simulación y visualización de tumores y análisis estadístico de datos. Precisamente en el ámbito de la integración de datos heterogéneos surge la necesidad de añadir información externa al sistema proveniente de bases de datos públicas, así como relacionarla con la ya existente mediante técnicas de integración semántica. Para resolver esta necesidad se ha creado una herramienta, llamada Term Searcher, que permite hacer este proceso de una manera semiautomática. En el trabajo aquí expuesto se describe el desarrollo y los algoritmos creados para su correcto funcionamiento. Esta herramienta ofrece nuevas funcionalidades que no existían dentro del proyecto para la adición de nuevos datos provenientes de fuentes públicas y su integración semántica con datos privados.---ABSTRACT---Over the last few years, there has been a huge growth of biomedical data sources. The emergence of new techniques of genomic data generation and data base generation that contain this information, has created the need of storing it in order to access and work with its data. The information employed in the biomedical research field is stored in databases. This is due to the capability of databases to allow storing and managing data in a quick and simple way. Within databases there is a variety of formats, such as Excel, CSV or RDF. Currently, these biomedical investigations are based on data analysis, which lead to the discovery of correlations that allow inferring, for example, new treatments or more effective therapies for a specific disease or ailment. The volume of data handled in them is very large and dissimilar, which leads to the need of developing new methods for automatically integrating and homogenizing the heterogeneous data. The p-medicine (FP7-ICT-2009-270089) European project aims to assist medical researchers, in this case related to cancer research, providing them with new tools for managing and creating new knowledge from the analysis of the managed data. The ingestion of data into the platform and its subsequent processing with the provided tools aims to enable the generation of new models to assist in clinical decision support processes. Inside this project, there exist different tools related to areas such as the integration of heterogeneous data, the design and management of clinical trials, simulation and visualization of tumors and statistical data analysis. Particularly in the field of heterogeneous data integration, there is a need to add external information from public databases, and relate it to the existing ones through semantic integration methods. To solve this need a tool has been created: the term Searcher. This tool aims to make this process in a semiautomatic way. This work describes the development of this tool and the algorithms employed in its operation. This new tool provides new functionalities that did not exist inside the p-medicine project for adding new data from public databases and semantically integrate them with private data.