859 resultados para AZ31 MG ALLOY
Resumo:
This paper describes the effects of abrasive hardness and size on the 2-body abrasive wear mechanisms of a boronized low alloy steel. It is found that the wear resistance of the boronized steel is much greater against alumina abrasive than against silicon carbide. This difference in wear resistance is much enhanced when the particle size or the applied load is increased. Scanning electron microscopy of the worn specimens and of the used abrasive papers revealed that the enhanced difference in wear resistance between coarse alumina and silicon carbide papers is due to a change in the wear mechanism produced by silicon carbide papers with increasing abrasive particle size.
Resumo:
A ball-on-flat reciprocating micro-tribometer has been used to measure the friction coefficient between aluminium alloy strip and a steel ball. A relatively small ball and correspondingly low contact load is used to give a contact width of the order of 100μm, closer to asperity contact widths than generally found for this type of test. The effects of load, initial strip surface roughness, lubricants and boundary additives are investigated. It is found that the friction coefficient is significantly reduced by the addition of a lubricant. Observations of the wear tracks and ball surface show that the material transfer from aluminium to the ball is reduced in the presence of the lubricant. The initial friction coefficient is further reduced by the addition of a boundary additive, but the friction coefficient after 8 cycles is unchanged. Copyright © 2004 by Springer Science+Business Media, Inc.
Resumo:
The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples. © 2013 SPIE.
Resumo:
Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell's algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume. © 2014 Elsevier B.V. All rights reserved.
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-06-04T08:36:34Z No. of bitstreams: 1 dspace.cfg: 33388 bytes, checksum: ac9630d3fdb36a155287a049e8b34eb7 (MD5)
Resumo:
InGaN/GaN multi-quantum-well blue (461 +/- 4 nm) light emitting diodes with higher electroluminescence intensity are obtained by postgrowth thermal annealing at 720 C in O-2-ambient. Based on our first-principle total-energy calculations, we conclude that besides dissociating the Mg-H complex by forming H2O, annealing in O-2 has another positive effect on the activation of acceptor Mg in GaN. Mg can be further activated by the formation of an impurity band above the valence band maximum of host GaN from the passivated Mg-Ga-O-N complex. Our calculated ionization energy for acceptor Mg in the passivated system is about 30 meV shallower than that in pure GaN, in good agreement with previous experimental measurement. Our model can explain that the enhanced electroluminescence intensity of InGaN/GaN MQWs based on Mg-doped p-type GaN is due to a decrease in the ionization energy of Mg acceptor with the presence of oxygen. (C) 2008 American Institute of Physics.
Resumo:
Calculations of electronic structures and optical properties of Mg (or Si) and Mn co-doped GaN were carried out by means of first-principle plane-wave pesudopotential (PWP) based on density functional theory - The spin polarized impurity bands of deep energy levels were found for both systems. They are half metallic and suitable for spin injectors. Compared with GaN Mn, GaN Mn-Mg exhibits a significant increase in T-C 1 while the 1.3 eV absorption peak in GaN Mn disappears due to addition of Mg. In addition, a strong absorption peak due to T-4(1) (F) -> T-4(2) (F) transition of Mn4+ were observed near 1.1 eV. Nevertheless, GaN Mn-Si failed to show increase of T-C, and the absorption peak was not observed at the low energy side.
Resumo:
Using the first-principles band-structure method, we investigate the p-type doping properties and band structural parameters of the random Ga1-xInxN1-yAsy quaternary alloys. We show that the Mg-Ga substitution is a better choice than ZnGa to realize the p-type doping because of the lower transition energy level and lower formation energy. The natural valence band alignment of GaAs and GaInNAs alloys is also calculated, and we find that the valence band maximum becomes higher with the increasing in composition. Therefore, we can tailor the band offset as desired which is helpful to confine the electrons effectively in optoelectronic devices. (C) 2008 Published by Elsevier B.V.
Resumo:
Mg-doped p-InGaN layers with In composition of about 10% are grown by metalorganic chemical vapor deposition (MOCVD). The effect of the annealing temperature on the p-type behavior of Mg-doped InGaN is studied. It is found that the hole concentration in p-InGaN increases with a rising annealing temperature in the range of 600 850 C, while the hole mobility remains nearly unchanged until the annealing temperature increases up to 750 C, after which it decreases. On the basis of conductive p-type InGaN growth, the p-In0.1Ga0.9N/i-In0.1Ga0.9N/n-GaN junction structure is grown and fabricated into photodiodes. The spectral responsivity of the InGaN/GaN p-i-n photodiodes shows that the peak responsivity at zero bias is in the wavelength range 350-400 nm.