825 resultados para ASPERGILLUS-ORYZAE
Resumo:
La producción porcina se encuentra entre una de las más importantes en el continente americano. La carne y subproductos de cerdos alimentados con cereales contaminados por ocratoxina A (OTA) son también fuente de contaminación para el hombre. Esta toxina producida por diferentes especies de Aspergillus presenta propiedades nefrotóxicas, genotóxicas e inmunosupresoras. Actualmente hay un considerable interés en la industria de alimentos por las sustancias vegetales como una alternativa para la prevención de las micotoxicosis. Baccharis articulata y Minthostachys verticillata son plantas medicinales argentinas que han sido ampliamente estudiadas por nuestro grupo de investigación, demostrando propiedades antivirales, antimicrobianas, inmunomoduladoras y antioxidantes. Estudios recientes mostraron que ácido clorogénico aislado de B. articulata redujo los efectos tóxicos de OTA en linfocitos de ratas. Además, estudios in vitro e in vivo demostraron ausencia de efectos citotóxicos y genotóxicos para estas sustancias vegetales. La hipótesis planteada es: El aceite esencial y/o uno de sus componentes puros (limoneno) obtenidos de M. verticillata y los componentes mayoritarios de B. articulata, poseen capacidad para reducir los efectos citogenotóxicos e inmunotóxicos inducidos por OTA, permitiendo su utilización como aditivos alimentarios para el mejoramiento de la producción porcina”. El objetivo del proyecto es caracterizar in vitro e in vivo la capacidad de sustancias obtenidas de plantas medicinales para revertir los efectos tóxicos inducidos por OTA y su posible aplicación como aditivos biológicos en los agroecosistemas de producción porcina. Se recolectará el material vegetal y se obtendrá aceite esencial y extractos acuosos, luego se realizará la identificación y cuantificación de los compuestos puros por CG o HPLC. Para los ensayos de citotoxicidad in vitro, células Vero y PBMCs de ratas Wistar, se enfrentarán a diferentes concentraciones de las sustancias vegetales SV y OTA y la viabilidad celular será evaluada por test de captación de rojo neutro, tinción de exclusión al azul de tripán y método colorimétrico de MTT. La apoptosis inducida por OTA y el efecto protector de las SV se evaluará mediante análisis de fragmentación de ADN por TUNEL, expresión de caspasas-3 y 8 por Western-Blot, expresión de Bax, y Bcl-2 por inmunohistoquímica, RT-PCR y real time PCR y análisis de externalización de fosfatidilserina (FS) por citometría de flujo. Para los estudios in vivo se utilizarán ratas Wistar que serán alimentadas diariamente y por 28 días con diferentes dietas que incluirán el alimento balanceado adicionado con distintas concentraciones de OTA, SV o combinaciones de OTA+SV. Luego, se sacrificarán los animales y se determinará el daño genotóxico inducido por OTA y la reducción del daño por las SV, mediante el test de micronúcleos. También se caracterizará la respuesta inmune de las ratas tratadas determinando la producción de Ac por ELISA, y la respuesta de las PBMCs a mitógenos por citometría de flujo. Teniendo en cuenta los resultados preliminares obtenidos con ácido clorogénico, se esperan obtener similares resultados tanto con el aceite esencial de M. verticillata así como con los otros compuestos. También se espera que las SV adicionadas a las raciones alimentarias contaminadas con OTA, reduzcan los daños citogenotóxicos e inmunotóxicos que produce esta micotoxina. El proyecto posee un fuerte impacto sobre el sector productivo dado que, los riesgos relacionados con la contaminación por micotoxinas están presentes en todos los ámbitos del sector agrícola-ganadero, afectando la economía de nuestro país. La incorporación de sustancias vegetales, inocuas, como aditivos alimentarios para disminuir los efectos tóxicos que causa OTA aportará conocimientos y tecnología a la industria pecuaria y alimentaria para mejorar la producción porcina así como la calidad de la carne y los subproductos destinados a consumo humano
Resumo:
Microfilmed for preservation.
Resumo:
Lebenslauf.
Resumo:
Rhizopus arrhizus, strain DAR 36017, produced L(+)-lactic acid in a simultaneous saccharification and fermentation process using starch waste effluents. Lactic acid at 19.5 - 44.3 g l(-1) with a yield of 0.85 - 0.96 g g(-1) was produced in 40 h using 20 - 60 g starch l(-1). Supplementation of nitrogen source may be unnecessary if potato or corn starch waste effluent was used as a production medium.
Resumo:
This paper describes a feasibility study of a for lactic acid production integrated with are treatment of wastewater from an industrial starch plant. Rhizopus oryzae two strains, Rhizopus arrhizus and Rhizopus oligosporus were tested with respect to their capability to carry out simultaneous saccharification and fermentation to lactic acid using potato wastewater. Rhizopus arrhizus DAR 36017 was identified as a suitable strain that demonstrated a high capacity for starch saccharification and lactic acid synthesis. The optimal conditions, in terms of pH, temperature and starch concentration, for lactic acid production were determined. The selected fungal strain grew well in a pH range from 3.0 to 7.0. The addition of CaCO(3)10 g dm(-3) maintained the pH at 5.0-6.0 and significantly enhanced lactic acid production. Kinetic study revealed that almost complete starch saccharification and a lactic acid yield of 450g kg(-1) could be achieved in 20 h and 28 h cultivation, respectively. The maximum lactic acid production 21 g dm(-3) and mycelial biomass (1.7 g dm(-3)) were obtained at 30degreesC. Besides the multiple bioproducts, total removal of suspended solids and 90% reduction of COD were achieved in a single no-aseptic operation. (C) 2003 Society of Chemical Industry.
Resumo:
The effects of microbial phytase supplementation of phosphorus-adequate, wheat-based diets with available lysine : energy density ratios ranging from 0.75 to 0.90 g available lysine/MJ DE on growth performance of weaner pigs were investigated in 3 studies. In the first study, increasing levels of dietary phytate depressed growth rates (P<0.08) and efficiency of feed conversion (P<0.01) and phytase supplementation enhanced growth rates (P<0.05) and tended to improve feed efficiency (P<0.15). There were no significant interactions between dietary phytate and phytase inclusion to support the hypothesis that dietary substrate levels of phytate govern responses to phytase. However, in this and other studies, percentage increases in efficiency of feed conversion generated by phytase were positively correlated to dietary phytate concentrations to a significant extent (P<0.005), so it is possible that dietary substrate levels are of importance to the magnitude of responses following phytase supplementation. Diets with 3 levels of protein, expressed as 0.80, 0.85, and 0.90 g available lysine/MJ DE, were offered to pigs without and with phytase in the second study. Protein/amino acid levels or lysine : energy density ratios did not influence growth performance, which was not expected. However, phytase tended to increase growth rates (P<0.08) and improved feed efficiency (P<0.01). Although it is believed that phytase may have a positive influence on protein utilisation, this was not demonstrated in this experiment. In the third study, the simultaneous inclusion of phytase and xylanase feed enzymes in wheat-based weaner diets did not increase growth performance responses in comparison with phytase alone. Individually, phytase improved feed efficiency (P<0.05) and numerically increased growth rates (P<0.25). Although responses in growth performance of weaner pigs following phytase supplementation lacked consistency, they were generally positive and indicative of anti-nutritive properties of phytate that are unrelated to P availability. That these positive responses were observed in diets with suboptimal available lysine : energy density ratios is consistent with the possibility that phytate has a negative influence on protein utilisation, which is ameliorated by phytase. However, these antinutritive effects and their underlying mechanisms need to be better defined if full advantage of the potential protein-sparing effects of microbial phytase is to be taken.
Resumo:
Epipolythiodioxopiperazine toxins are secreted by a range of fungi, including Leptosphaeria maculans, which produces sirodesmin, and Aspergillus fumigatus, which produces gliotoxin. The L. maculans biosynthetic gene cluster for sirodesmin includes an ABC transporter gene, sirA. Disruption of this gene led to increased secretion of sirodesmin into the medium and an altered ratio of sirodesmin to its immediate precursor. The transcription pattern of a peptide synthetase that catalyses an early step in sirodesmin biosynthesis was elevated in the sirA mutant by 47% over a 7-day period. This was consistent with the finding that the transporter mutant had elevated sirodesmin levels. Despite increased production of sirodesmin, the sit-A mutant was more sensitive to both sirodesmin and gliotoxin. The putative gliotoxin transporter gene, gliA, (a major facilitator superfamily transporter) from A.fumigatus complemented the tolerance of the L. maculans sirA mutant to gliotoxin, but not to sirodesmin. The results indicate that SirA contributes to self-protection against sirodesmin in L. maculans and suggest a transporter other than SirA is primarily responsible for efflux of endogenously produced sirodesmin. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A case of aspergillus tracheobronchitis following influenza A infection in an immunocompetent 35 year old woman is described that required prolonged mechanical ventilation for airways obstruction. Treatment included liposomal amphotericin, inhaled amphotericin, gamma interferon and GM-CSF. Liposomal amphotericin therapy was associated with reversible hepatosplenomegaly. Inhaled corticosteroids with continued antifungal therapy were used for the management of severe recurrent airway obstruction. After a prolonged course of treatment she survived with fixed airways obstruction unresponsive to corticosteroids.
Resumo:
Aspergillus spp. produce aflatoxins in peanut, which poses a health risk to humans and animals, as well as affecting the marketability of peanuts. The current research found that more aflatoxin is produced under rain fed (RF) compared to irrigated (IRR) conditions, and was more predominant in juvenile (R3-5 stage) compared to older (R6-8 stage) pods. No aflatoxin was recorded in marketable pods of the Streeton cultivar in either of the growing conditions, whereas the cultivar NC-7 produced aflatoxin under RF conditions only. Sugars such as glucose, fructose and sucrose were positively correlated with total aflatoxins. It appears that Aspergillus utilises these simple carbohydrates as substrates in biosynthesis of aflatoxins.
Resumo:
Background: Oral itraconazole (ITRA) is used for the treatment of allergic bronchopulmonary aspergillosis in patients with cystic fibrosis (CF) because of its antifungal activity against Aspergillus species. ITRA has an active hydroxy-metabolite (OH-ITRA) which has similar antifungal activity. ITRA is a highly lipophilic drug which is available in two different oral formulations, a capsule and an oral solution. It is reported that the oral solution has a 60% higher relative bioavailability. The influence of altered gastric physiology associated with CF on the pharmacokinetics (PK) of ITRA and its metabolite has not been previously evaluated. Objectives: 1) To estimate the population (pop) PK parameters for ITRA and its active metabolite OH-ITRA including relative bioavailability of the parent after administration of the parent by both capsule and solution and 2) to assess the performance of the optimal design. Methods: The study was a cross-over design in which 30 patients received the capsule on the first occasion and 3 days later the solution formulation. The design was constrained to have a maximum of 4 blood samples per occasion for estimation of the popPK of both ITRA and OH-ITRA. The sampling times for the population model were optimized previously using POPT v.2.0.[1] POPT is a series of applications that run under MATLAB and provide an evaluation of the information matrix for a nonlinear mixed effects model given a particular design. In addition it can be used to optimize the design based on evaluation of the determinant of the information matrix. The model details for the design were based on prior information obtained from the literature, which suggested that ITRA may have either linear or non-linear elimination. The optimal sampling times were evaluated to provide information for both competing models for the parent and metabolite and for both capsule and solution simultaneously. Blood samples were assayed by validated HPLC.[2] PopPK modelling was performed using FOCE with interaction under NONMEM, version 5 (level 1.1; GloboMax LLC, Hanover, MD, USA). The PK of ITRA and OH‑ITRA was modelled simultaneously using ADVAN 5. Subsequently three methods were assessed for modelling concentrations less than the LOD (limit of detection). These methods (corresponding to methods 5, 6 & 4 from Beal[3], respectively) were (a) where all values less than LOD were assigned to half of LOD, (b) where the closest missing value that is less than LOD was assigned to half the LOD and all previous (if during absorption) or subsequent (if during elimination) missing samples were deleted, and (c) where the contribution of the expectation of each missing concentration to the likelihood is estimated. The LOD was 0.04 mg/L. The final model evaluation was performed via bootstrap with re-sampling and a visual predictive check. The optimal design and the sampling windows of the study were evaluated for execution errors and for agreement between the observed and predicted standard errors. Dosing regimens were simulated for the capsules and the oral solution to assess their ability to achieve ITRA target trough concentration (Cmin,ss of 0.5-2 mg/L) or a combined Cmin,ss for ITRA and OH-ITRA above 1.5mg/L. Results and Discussion: A total of 241 blood samples were collected and analysed, 94% of them were taken within the defined optimal sampling windows, of which 31% where taken within 5 min of the exact optimal times. Forty six per cent of the ITRA values and 28% of the OH-ITRA values were below LOD. The entire profile after administration of the capsule for five patients was below LOD and therefore the data from this occasion was omitted from estimation. A 2-compartment model with 1st order absorption and elimination best described ITRA PK, with 1st order metabolism of the parent to OH-ITRA. For ITRA the clearance (ClItra/F) was 31.5 L/h; apparent volumes of central and peripheral compartments were 56.7 L and 2090 L, respectively. Absorption rate constants for capsule (kacap) and solution (kasol) were 0.0315 h-1 and 0.125 h-1, respectively. Comparative bioavailability of the capsule was 0.82. There was no evidence of nonlinearity in the popPK of ITRA. No screened covariate significantly improved the fit to the data. The results of the parameter estimates from the final model were comparable between the different methods for accounting for missing data, (M4,5,6)[3] and provided similar parameter estimates. The prospective application of an optimal design was found to be successful. Due to the sampling windows, most of the samples could be collected within the daily hospital routine, but still at times that were near optimal for estimating the popPK parameters. The final model was one of the potential competing models considered in the original design. The asymptotic standard errors provided by NONMEM for the final model and empirical values from bootstrap were similar in magnitude to those predicted from the Fisher Information matrix associated with the D-optimal design. Simulations from the final model showed that the current dosing regimen of 200 mg twice daily (bd) would provide a target Cmin,ss (0.5-2 mg/L) for only 35% of patients when administered as the solution and 31% when administered as capsules. The optimal dosing schedule was 500mg bd for both formulations. The target success for this dosing regimen was 87% for the solution with an NNT=4 compared to capsules. This means, for every 4 patients treated with the solution one additional patient will achieve a target success compared to capsule but at an additional cost of AUD $220 per day. The therapeutic target however is still doubtful and potential risks of these dosing schedules need to be assessed on an individual basis. Conclusion: A model was developed which described the popPK of ITRA and its main active metabolite OH-ITRA in adult CF after administration of both capsule and solution. The relative bioavailability of ITRA from the capsule was 82% that of the solution, but considerably more variable. To incorporate missing data, using the simple Beal method 5 (using half LOD for all samples below LOD) provided comparable results to the more complex but theoretically better Beal method 4 (integration method). The optimal sparse design performed well for estimation of model parameters and provided a good fit to the data.
Resumo:
This chapter reviews studies on the effects of mycotoxins on embryonic and fetal development, especially those toxins that are global food and feed contaminants. The toxins discussed include aflatoxin produced by Aspergillus flavus and A. parasiticus, ochratoxin which is produced by Aspergillus species particularly A. ochraceus as well as Penicillium verrucosum, ergot alkaloids produced by Claviceps spp., and the Fusarium toxins (fumonisins, deoxynivalenol [vomitoxin], and zearalenone). These toxins have been shown to be teratogenic and/or embryotoxic in different animal bioassays. The implications of toxicity on embryogenesis, and the progress of research on these mycotoxins, are also examined.
Resumo:
Asthma is a multifactorial disease for which a variety of mouse models have been developed. A major drawback of these models is represented by the transient nature of the airway pathology peaking 24 to 72 hours after challenge and resolving in 1 to 2 weeks. The objective of this study is to characterize the temporal evolution of pulmonary inflammation and remodeling in a recently described mouse model of chronic asthma (8 week treatment with 3 allergens relevant for the human pathology: Dust mite, Ragweed, and Aspergillus; DRA). We studied the DRA model taking advantage of fluorescence molecular tomography (FMT) imaging using near-infrared probes to non-invasively evaluate lung inflammation and airway remodeling. At 4, 6, 8 or 11 weeks, cathepsin- and metalloproteinase-dependent fluorescence was evaluated in vivo. A subgroup of animals, after 4 weeks of DRA, was treated with Budesonide (100 µg/kg intranasally) daily for 4 weeks. Cathepsin-dependent fluorescence in DRA-sensitized mice resulted significantly increased at 6 and 8 weeks, and was markedly inhibited by budesonide. This fluorescent signal well correlated with ex vivo analysis such as bronchoalveolar lavage eosinophils and alveolar cell infiltration. Metalloproteinase-dependent fluorescence was significantly increased at 8 and 11 weeks, nicely correlated with collagen deposition, as evaluated histologically by Masson’s Trichrome staining, and airway epithelium hypertrophy, and was also partly inhibited by budesonide. In conclusion, FMT proved suitable for longitudinal study to evaluate asthma progression, both in terms of inflammatory cell infiltration and airway remodeling, allowing the determination of treatment efficacy in a chronic asthma model in mice.
Resumo:
During the 24 hour period following inoculation, aggregation of spores and sporelings can have an important effect on the subsequent growth of filamentous fungi in submerged culture. This early phase of growth does not appear to have received much attention, and it was for this reason that the author's research was started. The aggregation, germination and early growth of the filamentous fungus Aspergillus niger have been followed in aerated tower fermenters, by microscopic examination. By studying many individual sporelings it has been possible to estimate the specific growth rate and germination times, and then to assess the branching characteristics of the fungus over a period of from 1 to 10 hours after germination. The results have been incorporated into computer models to simulate the development of the physical structure of individual and aggregated sporelings. Following germination, and an initial rapid growth phase, fungi were found to grow exponentially: in the case of A.niger the mean germination time was about 5 hours and the doubling time was as short as 1.5 hours. Branching also followed an exponential pattern and appeared to be related to hyphal length. Using a simple hypothesis for growth along with empirical parameters, typical fungal structures were generated using the computer models : these compared well with actual sporelings observed under the microscope. Preliminary work suggested that the techniques used in this research could be successfully applied to a range of filamentous fungi.
Resumo:
Fungi are ubiquitous organisms in nature and can be found in association with healthy eyes. The incidence of actual fungal infection of the eye, however, is relatively low compared with that attributable to viruses and bacteria. Nevertheless, fungal infection of the eye is increasing especially in immuno-compromised patients and a wide variety of fungal infections have now been described worldwide with species of Fusarium, Aspergillus, Candida, and dematiaceous fungi predominating. At present there are a limited number of compounds available to control ocular mycoses while resistance to anti-fungal agents has been growing in recent years, especially to azoles. Several mechanisms of resistance have been identified including modification of sterol synthesis pathways by the fungus, modification of enzymes to reduce the binding of azoles to fungal components and increased efficiency of removal of the azole within fungal cells. Although resistance to amphotericin-B has been reported, it continues to be the most important treatment for life-threatening conditions and more severe ophthalmic infections. Natamycin is often first choice for filamentous fungal keratitis and topical amphotericin-B for Candida keratitis. Continued monitoring of the behaviour of ocular fungi will be essential in future together with the development of new anti-fungal agents.