989 resultados para AMPLIFIED FRAGMENT LENGTH POLYMORPHISM
Resumo:
Aims: To evaluate the IL1RN polymorphism as a possible marker for Rheumatic Fever (RF) susceptibility or disease severity. Methods: The genotypes of 84 RF patients (Jones criteria) and 84 normal race-matched controls were determined through the analysis of the number of 86-bp tandem repeats in the second intron of IL1RN. The DNA was extracted from peripheral-blood leukocytes and amplified with specific primers. Clinical manifestations of RF were obtained through a standardized questionnaire and an extensive chart review. Carditis was defined as new onset cardiac murmur that was perceived by a trained physician with corresponding valvae regurgitation or stenosis on echocardiogram. Carditis was classified as severe in the presence of congestive heart failure or upon the indication for cardiac surgery. The statistical association among the genotypes, RF and its clinical variations was determined. Results: The presence of allele I and the genotype A1/A1 were found less frequently among patients with severe carditis when compared to patients without this manifestation (OR = 0.11, p = 0.031; OR = 0.092, p = 0.017). Neither allele I nor allele 2 were associated with the presence of RF (p = 0.188 and p = 0.106), overall carditis (p = 0.578 and p = 0.767), polyarthritis (p = 0.343 and p = 0.313) and chorea (p = 0.654 and p = 0.633). Conclusion: In the Brazilian population, the polymorphism of the IL-1ra gene is a relevant factor for rheumatic heart disease severity. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: Prostate cancer (PCa) is the most frequent tumor in males in Brazil. Single nucleotide polymorphisms (SNP) have been demonstrated in the promoter region of matrix metalloproteinases (MMPs) genes and have been associated with development and progression of some cancers. In this study, our aim was to investigate a possible relation between polymorphism of the promoter region of the MMP2 gene and classical prognostic parameters in prostate cancer. Materials and methods: Genomic DNA was extracted using conventional protocols. The DNA sequence containing the polymorphic site was amplified by real-time polymerase chain reaction, using fluorescent probes (TaqMan). Results: In patients with tumors of a higher stage (pT3), a polymorphic allele in the MMP2 gene was more frequent (P = 0.026) than in patients with lower tumor stage. A polymorphic allele in the MMP2 gene was more frequent in Gleason >= 7 than in Gleason <= 6 (P = 0.042). Conclusions: We conclude that MMP2 polymorphism can be used together with pathological stage and Gleason score to identify patients with worse prognosis. Our results illustrate the potential use of MMP2 SNP as a molecular marker for prostate cancer. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objective: The aim of this study was to investigate the prevalence of the Eosinophil cationic protein (ECP)-gene polymorphism 434(G > C) in oral squamous cell carcinoma (OSCC) patients and its association with tumor-associated tissue eosinophilia (TATE), demographic, clinical, and microscopic variables. Methods: The ECP genotypes of 165 healthy individuals and 157 OSCC patients were detected by PCR-RFLP analysis after cleavage of the amplified DNA sequence with enzyme PstI. TATE was obtained by morphometric analysis. Chi-square test or Fisher`s exact test was used to analyze the association of ECP-gene polymorphism 434(G > C) with TATE, demographic, clinical, and microscopic variables in OSCC patients. Disease-free survival and overall survival were calculated by the Kaplan-Meier product-limit actuarial method and the comparison of the survival curves were performed using log rank test. Results: Most of healthy individuals (53.33%) and OSCC patients (57.97%) were heterozygous for the ECP 434(G > C) polymorphism. Based on numerical differences, our results showed that OSCC patients with intense TATE and at least one C allele had a higher frequency of bilateral neck dissection, local recurrence, vascular embolization, involved resection margins, and postoperative radiotherapy. No statistically significant differences on survival rates were found in OSCC patients presenting different ECP 434(G > C) genotypes. Conclusions: These results suggest a tendency towards a poor clinical outcome in OSCC patients with intense TATE and 434GC/CC genotypes, probably due to an ECP genetic variant with altered cytotoxic activity.
Resumo:
As a result of testing for lipid and apolipoprotein(e) (apo E) phenotype status of an indigenous Australian community, an apo E variant associated with type III hyperlipoproteinaemia has been identified. Apo E phenotype was determined by analysis of VLDL by isoelectric focusing, and genotype on DNA amplified by polymerase chain reaction, using two different restriction enzyme isotyping assays. Phenotypes and genotypes were discordant in samples from two subjects and an abnormal-sized restriction fragment was also observed in their genotyping gel patterns. DNA sequencing studies revealed this was due to a single nucleotide deletion. 3817delC, at amino acid 136 on apo E. This resulted in a new reading frame and the premature termination of the apo E protein due to a stop codon (TGA) at nucleotide 4105. The variant apo E null allele showed a recessive mode of inheritance and, in combination with the E2 allele, resulted in the type III hyperlipoproteinaemic phenotype but when inherited with the E4 allele had no marked effect on plasma lipids.
Resumo:
Microsatellites are difficult to recover from large plant genomes so cross-specific utilisation is an important source of markers. Fifty micro satellites were tested for cross-specific amplification and polymorphism to two New World hard pine species, slash pine (Pinus elliottii var. elliottii) and Caribbean pine (R caribaea var. hondurensis). Twenty-nine (58%) markers amplified in both hard pine species, and 23 of these 29 were polymorphic. Soft pine (subgenus Strobus) microsatellite markers did amplify, but none were polymorphic. Pinus elliottii var. elliottii and R caribaea var. hondurensis showed mutational changes in the flanking regions and the repeat motif that were informative for Pinus spp. phylogenetic relationships. Most allele length variation could be attributed to variability in repeat unit number. There was no evidence for ascertainment bias.
Resumo:
Merozoite surface protein 1 (MSP1) of malaria parasites undergoes proteolytic processing at least twice before invasion into a new RBC. The 42-kDa fragment, a product of primary processing, is cleaved by proteolytic enzymes giving rise to MSP1(33), which is shed from the merozoite surface, and MSP1(19), which is the only fragment carried into a new RBC. In this study, we have identified T cell epitopes on MSP1(33) of Plasmodium yoelii and have examined their function in immunity to blood stage malaria. Peptides 20 aa in length, spanning the length of MSP1(33) and overlapping each other by 10 aa, were analyzed for their ability to induce T cell proliferation in immunized BALB/c and C57BL/6 mice. Multiple epitopes were recognized by these two strains of mice. Effector functions of the dominant epitopes were then investigated. Peptides Cm15 and Cm21 were of particular interest as they were able to induce effector T cells capable of delaying growth of lethal P. yoelii YM following adoptive transfer into immuno-deficient mice without inducing detectable Ab responses. Homologs of these epitopes could be candidates for inclusion in a subunit vaccine.
Resumo:
The first genetic linkage map of macadamia (Macadamia integrifolia and M. tetraphylla) is presented. The map is based on 56 F-1 progeny of cultivars 'Keauhou' and 'A16'. Eighty-four percent of the 382 markers analysed segregated as Mendelian loci. The two-way pseudo-testcross mapping strategy allowed construction of separate parental cultivar maps. Ninety bridging loci enabled merging of these maps to produce a detailed genetic map of macadamia, 1100 cM in length and spanning 70-80% of the genome. The combined map comprised 24 linkage groups with 265 framework markers: 259 markers from randomly amplified DNA fingerprinting (RAF), five random amplified polymorphic DNA (RAPD), and one sequence-tagged microsatellite site (STMS). The RAF marker system unexpectedly revealed 16 codominant markers, one of them a putative microsatellite locus and exhibiting four distinct alleles in the cross. This molecular study is the most comprehensive examination to date of genetic loci of macadamia, and is a major step towards developing marker-assisted selection for this crop.
Resumo:
Formaldehyde (FA), also known as formalin, formal and methyl aldehydes, is a colorless, flammable, strong-smelling gas. It has an important application in embalming tissues and that result in exposures for workers in the pathology anatomy laboratories and mortuaries. Occupational exposure to FA has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferating cultured mammalian cells. The cytokinesis-block micronucleus (CBMN) assay was originally developped as an ideal system form easuring micronucleus (MN), however it can also be used to measure nucleoplasmic bridges (NBP) and nuclear buds (NBUD). Over the past decade another unique mechanism of micronucleus formation, known as nuclear budding has emerged. NBUDS is considered as a marker of gene amplification and/or altered gene dosage because the nuclear budding process is the mechanism by which cells removed amplified and/excess DNA.
Resumo:
Formaldehyde (FA) is ubiquitous in the environment and is a chemical agent that possesses high reactivity. Occupational exposure to FA has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. The exposure to this substance is epidemiologically linked to cancer and nuclear changes detected by the cytokinesis-block micronucleus test (CBMN). This method is extensively used in molecular epidemiology, since it determines several biomarkers of genotoxicity, such as micronucleus (biomarkers of chromosomes breakage or loss), nucleoplasmic bridges (biomarker of chromosome rearrangement, poor repair and / or telomeres fusion) and nuclear buds (biomarker of elimination of amplified DNA). The gene X-ray repair cross-complementing group 3 (XRCC3) is involved in homologous recombination repair of cross-links and chromosomal double-strand breaks and at least one polymorphism has been reported in codon 241, a substitution of a methionine for a threonine.
Resumo:
Random amplified polymorphic DNA (RAPD) technique is a simple and reliable method to detect DNA polymorphism. Several factors can affect the amplification profiles, thereby causing false bands and non-reproducibility of assay. In this study, we analyzed the effect of changing the concentration of primer, magnesium chloride, template DNA and Taq DNA polymerase with the objective of determining their optimum concentration for the standardization of RAPD technique for genetic studies of Cuban Triatominae. Reproducible amplification patterns were obtained using 5 pmoL of primer, 2.5 mM of MgCl2, 25 ng of template DNA and 2 U of Taq DNA polymerase in 25 µL of the reaction. A panel of five random primers was used to evaluate the genetic variability of T. flavida. Three of these (OPA-1, OPA-2 and OPA-4) generated reproducible and distinguishable fingerprinting patterns of Triatominae. Numerical analysis of 52 RAPD amplified bands generated for all five primers was carried out with unweighted pair group method analysis (UPGMA). Jaccard's Similarity Coefficient data were used to construct a dendrogram. Two groups could be distinguished by RAPD data and these groups coincided with geographic origin, i.e. the populations captured in areas from east and west of Guanahacabibes, Pinar del Río. T. flavida present low interpopulation variability that could result in greater susceptibility to pesticides in control programs. The RAPD protocol and the selected primers are useful for molecular characterization of Cuban Triatominae.
Resumo:
Optimization of the RAPD reaction for characterizing Salmonella enterica serovar Typhi strains was studied in order to ensure the reproducibility and the discriminatory power of this technique. Eight Salmonella serovar Typhi strains isolated from various regions in Brazil were examined for the fragment patterns produced using different concentrations of DNA template, primer, MgCl2 and Taq DNA polymerase. Using two different low stringency thermal cycle profiles, the RAPD fingerprints obtained were compared. A set of sixteen primers was evaluated for their ability to produce a high number of distinct fragments. We found that variations associated to all of the tested parameters modified the fingerprinting patterns. For the strains of Salmonella enterica serovar Typhi used in this experiment, we have defined a set of conditions for RAPD-PCR reaction, which result in a simple, fast and reproducible typing method.
Resumo:
Thirty-four Candida isolates were analyzed by random amplified polymorphic DNA using the primer OPG-10:24 Candida albicans; 4 Candida tropicalis; 2 Candida parapsilosis; 2 Candida dubliniensis; 1 Candida glabrata and 1 Candida krusei. The UPGMA-Pearson correlation coefficient was used to calculate the genetic distance between the different Candida groupings. Samples were classified as identical (correlation of 100%); highly related samples (90%); moderately related samples (80%) and unrelated samples (< 70%). The results showed that the RAPD proposed was capable of classifying the isolates coherently (such that same species were in the same dendrogram), except for two isolates of Candida parapsilosis and the positive control (Netherlands, 1973), probably because they are now recognized as three different species. Concerning the only fluconazole-resistant Candida tropicalis isolate with a genotype that was different to the others, the data were insufficient to affirm that the only difference was the sensitivity to fluconazole. We concluded that the Random Amplified Polymorphic DNA proposed might be used to confirm Candida species identified by microbiological methods.
Resumo:
INTRODUCTION: The present study investigated the association between mannose-binding lectin (MBL) gene polymorphism and serum levels with infection by HIV-1. METHODS: Blood samples (5mL) were collected from 97 HIV-1-infected individuals resident in Belém, State of Pará, Brazil, who attended the Special Outpatient Unit for Infections and Parasitic Diseases (URE-DIPE). CD4+ T-lymphocyte count and plasma viral load were quantified. A 349bp fragment of exon 1 of the MBL was amplified via PCR, using genomic DNA extracted from controls and HIV-1-infected individuals, following established protocols. MBL plasma levels of the patients were quantified using an enzyme immunoassay kit. RESULTS: Two alleles were observed: MBL*O, with a frequency of 26.3% in HIV-1-infected individuals; and the wild allele MBL*A (73.7%). Similar frequencies were observed in the control group (p > 0.05). Genotype frequencies were distributed according to the Hardy-Weinberg equilibrium in both groups. Mean MBL plasma levels varied by genotype, with statistically significant differences between the AA and AO (p < 0.0001), and AA and OO (p < 0.001) genotypes, but not AO and OO (p = 0.17). Additionally, CD4+ T-lymphocytes and plasma viral load levels did not differ significantly by genotype (p > 0.05). CONCLUSIONS: The results of this study do not support the hypothesis that MBL gene polymorphism or low plasma MBL concentrations might have a direct influence on HIV-1 infection, although a broader study involving a large number of patients is needed.
Resumo:
We characterized the Plasmodium falciparum antigen 332 (Ag332) which is specifically expressed during the asexual intraerythrocytic cycle of the parasite. The corresponding Pf332 gene has been located in the subtelomeric region of chromosome 11. Furthermore, it is present in all strais so far analyzed and shows marked restriction length fragment polymorphism. Partial sequence and restriction endonuclease digestion of cloned fragments revealed that the Pf332 gene is composed of highly degenerated repeats rich is glutamic acid. Mung been nuclease digestion and Northern blot analysis suggested that Pf332 gene codes for a protein of about 700 kDa. These data were further confirmed by Western blot and immunoprecipitation of parasites extracts with an antiserum raised against a recombinant clone expressing part of the Ag332. Confocal immunofluorescence showed that Ag332 is translocated from the parasite to the surface of infected red blood cells within vesicle-like structures. In addition, Ag332 was detected on the surface of monkey erythrocytes infected with Plasmodium falciparum.
Resumo:
Analysis of the genomes of schistosomes and one of their intermediate hosts, Biomphalaria glabrata, using Random Amplified Polymorphic DNA (RAPD) demonstrated that intraspecific genetic polymorphism in the parasite is limited but in the snail is highly pronounced. This suggests an important role for the snail in the determination of the epidemiology of the disease. In addition to their intraspecific stability, schistosome derived RAPDs exhibit a high level of interspecific polymorphism and are thus ideal for the construction of phylogenetic trees. For the detection of intraspecific polymorphisms extensive variation in the mitochondrial DNA is being exploited for the development of a PCR based test for Schistosoma mansoni. Gene level polymorphisms are being analyzed by Low Stringency Single Specific Primer PCR.