816 resultados para AEOLIAN BIOME
Resumo:
Travail créatif / Creative Work
Resumo:
Essai / Essay
Resumo:
Essai / Essay
Resumo:
Travail créatif / Creative Work
Resumo:
Essai / Essay
Resumo:
Essai / Essay
Resumo:
The Sahara Desert is the largest source of mineral dust in the world. Emissions of African dust increased sharply in the early 1970s, a change that has been attributed mainly to drought in the Sahara/Sahel region caused by changes in the global distribution of sea surface temperature. The human contribution to land degradation and dust mobilization in this region remains poorly understood, owing to the paucity of data that would allow the identification of long-term trends in desertification. Direct measurements of airborne African dust concentrations only became available in the mid-1960s from a station on Barbados and subsequently from satellite imagery since the late 1970s: they do not cover the onset of commercial agriculture in the Sahel region ~170 years ago. Here we construct a 3,200-year record of dust deposition off northwest Africa by investigating the chemistry and grain-size distribution of terrigenous sediments deposited at a marine site located directly under the West African dust plume. With the help of our dust record and a proxy record for West African precipitation we find that, on the century scale, dust deposition is related to precipitation in tropical West Africa until the seventeenth century. At the beginning of the nineteenth century, a sharp increase in dust deposition parallels the advent of commercial agriculture in the Sahel region. Our findings suggest that human-induced dust emissions from the Sahel region have contributed to the atmospheric dust load for about 200 years.
Resumo:
Here we present orbitally-resolved records of terrestrial higher plant leaf wax input to the North Atlantic over the last 3.5 Ma, based on the accumulation of long-chain n-alkanes and n-alkanl-1-ols at IODP Site U1313. These lipids are a major component of dust, even in remote ocean areas, and have a predominantly aeolian origin in distal marine sediments. Our results demonstrate that around 2.7 million years ago (Ma), coinciding with the intensification of the Northern Hemisphere glaciation (NHG), the aeolian input of terrestrial material to the North Atlantic increased drastically. Since then, during every glacial the aeolian input of higher plant material was up to 30 times higher than during interglacials. The close correspondence between aeolian input to the North Atlantic and other dust records indicates a globally uniform response of dust sources to Quaternary climate variability, although the amplitude of variation differs among areas. We argue that the increased aeolian input at Site U1313 during glacials is predominantly related to the episodic appearance of continental ice sheets in North America and the associated strengthening of glaciogenic dust sources. Evolutional spectral analyses of the n-alkane records were therefore used to determine the dominant astronomical forcing in North American ice sheet advances. These results demonstrate that during the early Pleistocene North American ice sheet dynamics responded predominantly to variations in obliquity (41 ka), which argues against previous suggestions of precession-related variations in Northern Hemisphere ice sheets during the early Pleistocene.
Resumo:
Mapping the abundance of 13C in leaf-wax components in surface sediments recovered from the seafloor off northwest Africa (0-35°N) reveals a clear pattern of delta13C distribution, indicating systematic changes in the proportions of terrestrial C3 and C4 plant input. At 20°N latitude, we find that isotopically enriched products characteristic of C4 plants account for more than 50% of the terrigenous inputs. This signal extends westward beneath the path of the dust-laden Sahara Air Layer (SAL). High C4 contributions, apparently carried by January trade winds, also extend far into the Gulf of Guinea. Similar distributions are obtained if summed pollen counts for the Chenopodiaceae-Amaranthaceae and the Poaceae are used as an independent C4 proxy. We conclude that the specificity of the latitudinal distribution of vegetation in North West Africa and the pathways of the wind systems (trade winds and SAL) are responsible for the observed isotopic patterns observed in the surface sediments. Molecular-isotopic maps on the marine-sedimentary time horizons (e.g., during the last glacial maximum) are thus a robust tool for assessing the phytogeographic changes on the tropical and sub-tropical continents, which have important implications for the changes in climatic and atmospheric conditions.
Resumo:
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.
Resumo:
Aeolian and fluvial sediment transport to the Atlantic Ocean offshore Mauritania were reconstructed based on grain-size distributions of the carbonate-free silt fraction of three marine sediment records of Cap Timiris Canyon to monitor the climatic evolution of present-day arid north-western Africa. During the late Pleistocene, predominantly coarse-grained particles, which are interpreted as windborne dust, characterise glacial dry climate conditions with a low sea level and extended sand seas that reach onto the exposed continental shelf off Mauritania. Subsequent particle fining and the abrupt decrease in terrigenous supply are attributed to humid climate conditions and dune stabilisation on the adjacent African continent with the onset of the Holocene humid period. Indications for an ancient drainage system, which was discharging fluvial mud offshore via Cap Timiris Canyon, are provided by the finest end member for early to mid Holocene times. However, in comparison to the Senegal and Niger River further south, the river system connecting Cap Timiris Canyon with the Mauritanian hinterland was starved during the late Holocene and is non-discharging under present-day arid climate conditions.