875 resultados para ADIPOSE-DERIVED STEM CELL
Resumo:
Stem cell transplantation has evolved as a promising experimental treatment approach for stroke. In this review, we address the major hurdles for successful translation from basic research into clinical applications and discuss possible strategies to overcome these issues. We summarize the results from present pre-clinical and clinical studies and focus on specific areas of current controversy and research: (i) the therapeutic time window for cell transplantation; (ii) the selection of patients likely to benefit from such a therapy; (iii) the optimal route of cell delivery to the ischemic brain; (iv) the most suitable cell types and sources; (v) the potential mechanisms of functional recovery after cell transplantation; and (vi) the development of imaging techniques to monitor cell therapy.
Resumo:
Lung macrophages, that is, the intravascular, interstitial, pleural, and surface macrophages, are part of the mononuclear phagocyte system. They are derived from the hematopoietic stem cell in the bone marrow with the monocytes as their putative precursors. Macrophages residing on the inner surfaces of the lungs and immersed within the lung lining layer, that is, the alveolar and the airway macrophages, are constantly exposed to the environment; it is those cells that are recognized as first line of cellular host defense.
Resumo:
Stem cells reside within tissue, ensuring its natural ability to repair an injury. They are involved in the natural repair of damaged tissue, which encompasses a complex process requiring the modulation of cell survival, extracellular matrix turnover, angiogenesis, and reverse remodeling. To date, the real reparative potential of each tissue is underestimated and noncommittal. The assessment of the biophysical properties of the extracellular environment is an innovative approach to better understand mechanisms underlying stem cell function, and consequently to develop safe and effective therapeutic strategies replacing the loss of tissue. Recent studies have focused on the role played by biomechanical signals that drive stem cell death, differentiation, and paracrinicity in a genetic and/or an epigenetic manner. Mechanical stimuli acting on the shape can influence the biochemistry and gene expression of resident stem cells and, therefore, the magnitude of biological responses that promote the healing of injured tissue. Nanotechnologies have proven to be a revolutionary tool capable of dissecting the cellular mechanosensing apparatus, allowing the intercellular cross-talk to be decoded and enabling the reparative potential of tissue to be enhanced without manipulation of stem cells. This review highlights the most relevant findings of stem cell mechanobiology and presents a fascinating perspective in regenerative medicine.
Resumo:
Tumour cells with a stem cell-like phenotype have recently been identified in prostate tumors and it has been suggested that this population may be responsible for the diversity of cell types within tumors and also for the initiation of metastases. These cells carry a number of defined markers: they are cd133 and cd44+ve and express high levels of alpha2beta1 integrin. In this study we have, for the first time, assessed matched primary and bone marrow biopsies from prostate cancer patients for the distribution of cells carrying these and a number of other putative stem cell markers.
Resumo:
Preeclampsia is associated with perinatal brain injury. Autologous placenta stem cell transplantation represents a promising future treatment option for neuroregeneration. The aim of this study was to compare the neuroregenerative capacity of preeclampsia-placenta stem cells to previously characterized placentas from uncomplicated pregnancies.
Resumo:
The inflammatory response is a critical component of ischemic stroke. In addition to its physiological role, the mechanisms behind transendothelial recruitment of immune cells also offer a unique therapeutic opportunity for translational stem cell therapies. Recent reports have demonstrated homing of neural stem cells (NSC) into the injured brain areas after intravascular delivery. However, the mechanisms underlying the process of transendothelial recruitment remain largely unknown. Here we describe the critical role of the chemokine CCL2 and its receptor CCR2 in targeted homing of NSC after ischemia.
Resumo:
Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity.
Resumo:
Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition to bulk cells. In this study, we report that leukemia stem cell function in xenotransplant models of acute myeloid leukemia (AML) depends on SIRPα-mediated inhibition of macrophages through engagement with its ligand CD47. We generated mice expressing SIRPα variants with differential ability to bind human CD47 and demonstrated that macrophage-mediated phagocytosis and clearance of AML stem cells depend on absent SIRPα signaling. We obtained independent confirmation of the genetic restriction observed in our mouse models by using SIRPα-Fc fusion protein to disrupt SIRPα-CD47 engagement. Treatment with SIRPα-Fc enhanced phagocytosis of AML cells by both mouse and human macrophages and impaired leukemic engraftment in mice. Importantly, SIRPα-Fc treatment did not significantly enhance phagocytosis of normal hematopoietic targets. These findings support the development of therapeutics that antagonize SIRPα signaling to enhance macrophage-mediated elimination of AML.
Resumo:
Castration is the standard therapy for advanced prostate cancer (PC). Although this treatment is initially effective, tumors invariably relapse as incurable, castration-resistant PC (CRPC). Adaptation of androgen-dependent PC cells to an androgen-depleted environment or selection of pre-existing, CRPC cells have been proposed as mechanisms of CRPC development. Stem cell (SC)-like PC cells have been implicated not only as tumor initiating/maintaining in PC but also as tumor-reinitiating cells in CRPC. Recently, castration-resistant cells expressing the NK3 homeobox 1 (Nkx3-1) (CARNs), the other luminal markers cytokeratin 18 (CK18) and androgen receptor (AR), and possessing SC properties, have been found in castrated mouse prostate and proposed as the cell-of-origin of CRPC. However, the human counterpart of CARNs has not been identified yet. Here, we demonstrate that in the human PC xenograft BM18, pre-existing SC-like and neuroendocrine (NE) PC cells are selected by castration and survive as totally quiescent. SC-like BM18 cells, displaying the SC markers aldehyde dehydrogenase 1A1 or NANOG, coexpress the luminal markers NKX3-1, CK18, and a low level of AR (AR(low)) but not basal or NE markers. These CR luminal SC-like cells, but not NE cells, reinitiate BM18 tumor growth after androgen replacement. The AR(low) seems to mediate directly both castration survival and tumor reinitiation. This study identifies for the first time in human PC SC-/CARN-like cells that may represent the cell-of-origin of tumor reinitiation as CRPC. This finding will be fundamental for refining the hierarchy among human PC cancer cells and may have important clinical implications.
Resumo:
BACKGROUND: Scientific progress in the biology of hematopoietic stem cells (HSCs) provides opportunities for advances in therapy for different diseases. While stem cell sources such as umbilical cord blood (UCB) are unproblematic, other sources such as human embryonic stem cells (hESCs) raise ethical concerns. STUDY DESIGN AND METHODS: In a prospective survey we established the ethical acceptability of collection, research, and therapy with UCB HSCs versus hESCs among health care professionals, pregnant women, patients undergoing in vitro fertilization therapy, parents, and HSC donors and recipients in Switzerland. RESULTS: There was overall agreement about an ethical justification for the collection of UCB for research and therapy in the majority of participants (82%). In contrast, research and therapy with hESCs was acceptable only by a minority (38% of all responders). The collection of hESCs solely created for HSC collection purposes met overall with the lowest approval rates. Hematologists displayed among the participants the highest acceptance rates for the use of hESCs with 55% for collection, 63% for research, and 73% for therapy. CONCLUSIONS: This is the first study assessing the perception of hESCs for research and therapy in comparison with UCB HSCs in different target groups that are exposed directly, indirectly, or not at all to stem cell-based medicine. Our study shows that the debate over the legitimacy of embryo-destructive transplantation medicine is far from over as particularly hESC research continues to present an ethical problem to an overwhelming majority among laypersons and even among health care professionals.
Resumo:
Mesenchymal stem cell (MSC) therapy is a promising approach for regaining muscle function after trauma. Prior to clinical application, the ideal time of transplantation has to be determined. We investigated the effects of immediate and delayed transplantation. Sprague-Dawley rats received a crush trauma to the left soleus muscle. Treatment groups were transplanted locally with 2 × 10(6) autologous MSCs, either immediately or 7 days after trauma. Saline was used as sham therapy. Contraction force tests and histological analyses were performed 4 weeks after injury. GFP-labelled MSCs were followed after transplantation. The traumatized soleus muscles of the sham group displayed a reduction of twitch forces to 36 ± 17% and of tetanic forces to 29 ± 11% of the non-injured right control side, respectively. Delayed MSC transplantation resulted in a significant improvement of contraction maxima in both stimulation modes (twitch, p = 0.011; tetany, p = 0.014). Immediate transplantation showed a significant increase in twitch forces to 59 ± 17% (p = 0.043). There was no significant difference in contraction forces between muscles treated by immediate and delayed cell transplantation. We were able to identify MSCs in the interstitium of the injured muscles up to 4 weeks after transplantation. Despite the fundamental differences of the local environment, which MSCs encounter after transplantation, similar results could be obtained with respect to functional muscle regeneration. We believe that transplanted MSCs residing in the interstitial compartment evolve their regenerative capabilities through paracrine pathways. Our data suggest a large time window of the therapeutical measures.
Resumo:
BACKGROUND AND OBJECTIVES. The presence of circulating hematopoietic progenitor cells in patients with myeloproliferative diseases (MPD) has been described. However, the exact nature of such progenitor cells has not been specified until now. The aim of this work was to investigate the presence of endothelial precursor cells in the blood of patients with MPD and to assess the role of the endothelial cell lineage in the pathophysiology of this disease. DESIGN AND METHODS. Endothelial progenitor cell marker expression (CD34, prominin (CD133), kinase insert domain receptor (KDR) or vascular endothelial growth factor receptor 2 (VEGFR2), and von Willebrand factor) was assessed in the blood of 53 patients with MPD by quantitative polymerase chain reaction. Clonogenic stem cell assays were performed with progenitor cells and monocytes to assess differentiation towards the endothelial cell lineage. The patients' were divided according to whether they had essential thrombocythemia (ET, n=17), polycythemia vera (PV, n=21) or chronic idiopathic myelofibrosis (CIMF, n=15) and their data compared with data from normal controls (n=16) and patients with secondary thrombo- or erythrocytosis (n=17). RESULTS. Trafficking of CD34-positive cells was increased above the physiological level in 4/17 patients with ET, 5/21 patients with PV and 13/15 patients with CIMF. A subset of patients with CIMF co-expressed the markers CD34, prominin (CD133) and KDR, suggesting the presence of endothelial precursors among the circulating progenitor cells. Clonogenic stem cell assays confirmed differentiation towards both the hematopoietic and the endothelial cell lineage in 5/10 patients with CIMF. Furthermore, the molecular markers trisomy 8 and JAK2 V617F were found in the grown endothelial cells of patients positive for trisomy 8 or JAK2 V617F in the peripheral blood, confirming the common clonal origin of both hematopoietic and endothelial cell lineages. INTERPRETATION AND CONCLUSIONS. Endothelial precursor cells are increased in the blood of a subset of patients with CIMF, and peripheral endothelial cells bear the same molecular markers as hematopoietic cells, suggesting a primary role of pathological endothelial cells in this disease.