973 resultados para Açaí solteiro
Resumo:
Self-assembled structures capable of mediating electron transfer are an attractive scientific and technological goal. Therefore, systematic variants of SH3-Cytochrome b(562) fusion proteins were designed to make amyloid fibers displaying heme-b(562) electron transfer complexes. TEM and AFM data show that fiber morphology responds systematically to placement of b(562) within the fusion proteins. UV-vis spectroscopy shows that, for the fusion proteins under test, only half the fiber-borne b(562) binds heme with high affinity. Cofactor binding also improves the AFM imaging properties and changes the fiber morphology through changes in cytochrome conformation. Systematic observations and measurements of fiber geometry suggest that longitudinal registry of subfilaments within the fiber, mediated by the interaction and conformation of the displayed proteins and their interaction with surfaces, gives rise to the observed morphologies, including defects and kinks. Of most interest is the role of small molecule modulation of fiber structure and mechanical stability. A minimum complexity model is proposed to capture and explain the fiber morphology in the light of these results. Understanding the complex interplay between these factors will enable a fiber design that supports longitudinal electron transfer.
Resumo:
Feeding and vocal behaviours of wild black gibbons (Hylobates concolor) were observed from 1987 to 1989 in south-western Yunnan, notably H. concolor jingdongensis at Mt. Wuliang (24-degrees 18-42'N, 100-degrees 30-50'E) in the early spring of 1989. 12 plant species were observed to have been eaten by the gibbons; these included tree species, lianas and epiphytes. Approximately 21 % of feeding time was devoted to eating fruits, 61 % to leaf buds and shoots, 7 % to flowers and 11 % to leaves. The gibbons preferred fruits to leaves even though they commonly ate leaves. In this study, the morning songs (duet and solo), reponsive (territorial) songs, alarm calls and communication calls were recorded. The gibbons sang their morning songs mainly in the early morning, with a single bout lasting more than 10 min on average. The singing of a group would trigger other groups, and all groups in an area tended to sing sequentially. The morning duet song bout was dominated by an adult male. The male emitted booms, aa notes, early multimodulated figures, intermediate multimodulated figures and codas, the latter occurring only in duets following the female's great call. The female uttered great calls and abortive great calls. The subadults or juveniles also took part in the morning songs. Lone males were heard to utter solos which lasted longer than the duets of the pairs.
Resumo:
Super-Resolution imaging techniques such as Fluorescent Photo-Activation Localisation Microscopy (FPALM) have created a powerful new toolkit for investigating living cells, however a simple platform for growing, trapping, holding and controlling the cells is needed before the approach can become truly widespread. We present a microfluidic device formed in polydimethylsiloxane (PDMS) with a fluidic design which traps cells in a high-density array of wells and holds them very still throughout the life cycle, using hydrodynamic forces only. The device meets or exceeds all the necessary criteria for FPALM imaging of Schizosaccharomyces pombe and is designed to remain flexible, robust and easy to use. © 2011 IEEE.
Resumo:
We have cloned a mouse homologue (designated Myak) of the yeast protein kinase YAK1. The 1210 aa open reading frame contains a putative protein kinase domain, nuclear localization sequences and PEST sequences. Myak appears to be a member of a growing family of YAK1-related genes that include Drosophila and human Minibrain as well as a recently identified rat gene ANPK that encode a steroid hormone receptor interacting protein. RNA blot analysis revealed that Myak is expressed at low levels ubiquitously but at high levels in reproductive tissues, including testis, epididymis, ovary, uterus, and mammary gland, as well as in brain and kidney. In situ hybridization analysis on selected tissues revealed that Myak is particularly abundant in the hormonally modulated epithelia of the epididymis, mammary gland, and uterus, in round spermatids in the testis, and in the corpora lutea in the ovary, Myak is also highly expressed in the aqueduct of the adult brain and in the brain and spinal cord of day 12.5 embryos, Mol. Reprod. Dev. 55:372-378, 2000. (C) 2000 Wiley-Liss, Inc.
Resumo:
From modelling to manufacturing, computers have increasingly become partners in the design process, helping automate many phases once carried out by hand. In the creative phase, computational synthesis methods aim at facilitating designers' task through the automated generation of optimally directed design alternatives. Nevertheless, applications of these techniques are mainly academic and industrial design practice is still far from applying them routinely. This is due to the complex nature of many design tasks and to the difficulty of developing synthesis methods that can be easily adapted to multiple case studies and automated simulation. This work stems from the analysis of implementation issues and obstacles to the widespread use of these tools. The research investigates the possibility to remove these obstacles through the application of a novel technique to complex design tasks. The ability of this technique to scale-up without sacrificing accuracy is demonstrated. The successful results confirm the possibility to use synthesis methods in complex design tasks and spread their commercial and industrial application.
Resumo:
A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.
Resumo:
The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ±0.4, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ2 /3 law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions. © 2012 American Physical Society.
Resumo:
A combination of singular systems analysis and analytic phase techniques are used to investigate the possible occurrence in observations of coherent synchronization between quasi-biennial and semi-annual oscillations (QBOs; SAOs) in the stratosphere and troposphere. Time series of zonal mean zonal winds near the Equator are analysed from the ERA-40 and ERA-interim reanalysis datasets over a ∼ 50-year period. In the stratosphere, the QBO is found to synchronize with the SAO almost all the time, but with a frequency ratio that changes erratically between 4:1, 5:1 and 6:1. A similar variable synchronization is also evident in the tropical troposphere between semi-annual and quasi-biennial cycles (known as TBOs). Mean zonal winds from ERA-40 and ERA-interim, and also time series of indices for the Indian and West Pacific monsoons, are commonly found to exhibit synchronization, with SAO/TBO ratios that vary between 4:1 and 7:1. Coherent synchronization between the QBO and tropical TBO does not appear to persist for long intervals, however. This suggests that both the QBO and tropical TBOs may be separately synchronized to SAOs that are themselves enslaved to the seasonal cycle, or to the annual cycle itself. However, the QBO and TBOs are evidently only weakly coupled between themselves and are frequently found to lose mutual coherence when each changes its frequency ratio to its respective SAO. This suggests a need to revise a commonly cited paradigm that advocates the use of stratospheric QBO indices as a predictor for tropospheric phenomena such as monsoons and hurricanes. © 2012 Royal Meteorological Society.
Resumo:
The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ± 0.4°, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ(2/3) law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions.
Resumo:
This paper reports a micro-electro-mechanical tilt sensor based on resonant sensing principles. The tilt sensor measures orientation by sensing the component of gravitational acceleration along a specified input axis. Design aspects of the tilt sensor are first introduced and a design trade-off between sensitivity, resolution and robustness is addressed. A prototype sensor is microfabricated in a foundry process. The sensor is characterized to validate predictive analytical and FEA models of performance. The prototype is tested over tilt angles ranging over ±90 degrees and the linearity of the sensor is found to be better than 1.4% over the tilt angle range of ±20°. The noise-limited resolution of the sensor is found to be approximately 0.00026 degrees for an integration time of 0.6 seconds. © 2012 IEEE.
Resumo:
This paper investigates the effect of mode-localization that arises from structural asymmetry induced by manufacturing tolerances in mechanically coupled, electrically transduced Si MEMS resonators. We demonstrate that in the case of such mechanically coupled resonators, the achievable series motional resistance (R x) is dependent not only on the quality factor (Q) but also on the variations in the eigenvector of the chosen mode of vibration induced by mode localization due to manufacturing tolerances during the fabrication process. We study this effect of mode-localization both theoretically and experimentally in two pairs of coupled double-ended tuning fork resonators with different levels of initial structural asymmetry. The measured series R x is minimal when the system is close to perfect symmetry and any deviation from structural symmetry induced by fabrication tolerances leads to a degradation in the effective R x. Mechanical tuning experiments of the stiffness of one of the coupled resonators was also conducted to study variations in R x as a function of structural asymmetry within the system, the results of which demonstrated consistent variations in motional resistance with predictions. © 2012 IEEE.