997 resultados para 584.7
Resumo:
The dielectric properties of Au/[93%Pb(Mg1/3Nb2/3)O-3-7%PbTiO3] (PMN-PT)/(La0.5Sr0.5)CoO3/MgO thin-film capacitor heterostructures, made using pulsed laser deposition, have been investigated, with particular emphasis on the changes in response associated with increasing the magnitude of the ac measuring field. It was found that increasing the ac field caused a change in the frequency spectrum of relaxators, increasing the speed of response of "slow" relaxators, with an associated decrease in the freezing temperature (T-f) of the relaxor system; in addition, other characteristic parameters relating to polar relaxation (activation energy E-a and attempt frequency 1/tau(0)), described by fitting of the dielectric response to a Vogel-Fulcher expression, were found to change continuously as ac field levels were increased.
Resumo:
CD33-related Siglecs (sialic acid-binding immunoglobulin-like lectins) 5–11 are inhibitory receptors that contain a membrane proximal ITIM (immunoreceptor tyrosine-based inhibitory motif) (I/V/L/)XYXX(L/V), which can recruit SHP-1/2. However, little is known about the regulation of these receptors. SOCS3 (suppressor of cytokine signaling 3) is up-regulated during inflammation and competes with SHP-1/2 for binding to ITIM-like motifs on various cytokine receptors resulting in inhibition of signaling. We show that SOCS3 binds the phosphorylated ITIM of Siglec 7 and targets it for proteasomal-mediated degradation, suggesting that Siglec 7 is a novel SOCS target. Following ligation, the ECS E3 ligase is recruited by SOCS3 to target Siglec 7 for proteasomal degradation, and SOCS3 expression is decreased concomitantly. In addition, we found that SOCS3 expression blocks Siglec 7-mediated inhibition of cytokine-induced proliferation. This is the first time that a SOCS target has been reported to degrade simultaneously with the SOCS protein and that inhibitory receptors have been shown to be degraded in this way. This may be a mechanism by which the inflammatory response is potentiated during infection.
Resumo:
Previous structure-activity studies have shown that the disulphide bridge of calcitonin gene-related peptide (CGRP) is important for the highly potent, CGRP receptor-mediated effects of this peptide. In this study penicillamine (Pen) was substituted for one or both of the cysteinyl residues to determine conformational and topographical properties of the disulphide bridge favourable for binding to CGRP receptors and/or receptor activation. Pen constrains the conformational flexibility of disulphide bridges in other peptides. Binding affinities were measured using a radioligand binding assay with membranes prepared from pig coronary arteries and I-125-h-alpha-CGRP. Functional effects were characterized using a previously reported pig coronary artery relaxation bioassay. The binding affinity of [Pen(2)]h-alpha-CGRP was not significantly different from that of h-alpha-CGRP. All other analogues showed reduced affinity for CGRP receptors. [Pen(2)]h-alpha-CGRP also caused relaxation of coronary arteries. The remaining analogues either caused relaxation with significantly reduced potency or failed to relax the arteries at concentrations up to 1 x 10(-5) M. All analogues that did not relax coronary arteries contained a D-Pen in position 7 and inhibited CGRP-induced relaxation. [D-Pen(2,7)]h-alpha- CGRP was the most potent antagonist with a K-B value of 630 nM. This affinity is similar to that of the classical CGRP receptor antagonist, h-alpha-CGRP(8-37), on these arteries (K-B, 212 nM). These studies show that modifying the topography of the disulphide bridge can cause large and variable effects on ligand binding and activation of CGRP receptors. The contribution of position 7 to the conformation and topography of the disulphide bridge of h-alpha-CGRP is crucial to the future design of agonists of CGRP receptors. Furthermore, position 7 is important for the development of new CGRP receptor antagonists with structures based on the whole sequence of h-alpha-CGRP.
Resumo:
Purpose: To prepare a nanoparticulate formulation expressing variable peripheral carboxyl density using non-endcapped and endcapped poly(lactide-co-glycolide), conjugated to antibodies recognising the siglec-7 receptor, which is expressed on most acute myeloid leukaemias. The aim is to exploit this receptor as a therapeutic target by constructing an internalising drug-loaded nanoparticle able to
translocate into cytoplasm by siglec receptor-mediated internalisation.
Materials and Methods: Antibodies to the siglec-7 (CD33-like) receptor were conjugated to dye-loaded nanoparticles using carbodiimide chemistry, giving 32.6 mg protein per mg of nanoparticles using 100% of the non-endcapped PLGA. Binding studies using cognate antigen were used to verify preservation of antibody function following conjugation.
Results: Mouse embryonic fibroblasts expressing recombinant siglec-7 receptor and exposed to NileRed-loaded nanoparticles conjugated to antibody accumulated intracellular fluorescence, which was not observed if either antibody or siglec-7 receptor was absent. Confocal microscopy revealed internalised perinuclear cytoplasmic staining, with an Acridine Orange-based analysis showing red staining in localised foci, indicating localisation within acidic endocytic compartments.
Conclusions: Results show antibody-NP constructs are internalised via siglec-7 receptor-mediated internalisation. If loaded with a therapeutic agent, antibody-NP constructs can cross into cytoplasmic
space and delivery drugs intracellularly to cells expressing CD33-like receptors, such as natural killer cells and monocytes.
Resumo:
The goals were to compare early school-age neurodevelopmental and respiratory outcomes for children who were treated with either early (15 days) postnatal corticosteroid therapy and to compare systemic dexamethasone treatment with inhaled budesonide treatment.
Resumo:
The effects of diabetes mellitus on male reproductive health have not been clearly defined. A previous publication from this group reported significantly higher levels of nuclear DNA fragmentation and mitochondrial DNA deletions in spermatozoa from men with type 1 diabetes. This study compared semen profiles, sperm DNA fragmentation and levels of oxidative DNA modification in spermatozoa of diabetic and non-diabetic men. Semen samples from 12 non-diabetic, fertile men and 11 type 1 diabetics were obtained and subjected to conventional light microscopic semen analysis. Nuclear DNA fragmentation was assessed using an alkaline Comet assay and concentrations of 7,8-dihydro-8-oxo-2-deoxyguanosine (8-OHdG), an oxidative adduct of the purine guanosine, were assessed by high-performance liquid chromatography. Conventional semen profiles were similar in both groups, whilst spermatozoa from type 1 diabetics showed significantly higher levels of DNA fragmentation (44% versus 27%; P < 0.05) and concentrations of 8-OHdG (3.6 versus 2.0 molecules of 8-OHdG per 105 molecules of deoxyguanosine; P < 0.05). Furthermore, a positive correlation was observed between DNA fragmentation and concentrations of 8-OHdG per 105 molecules of deoxyguanosine (rs = 0.7, P < 0.05). The genomic damage evident in spermatozoa of type 1 diabetics may have important implications for their fertility and the outcome of pregnancies fathered by these individuals.