966 resultados para 53
Resumo:
Although a number of studies have investigated the predictors of employment among refugee migrants, there is a dearth of evidence from longitudinal data. This study investigated the cross-sectional and longitudinal predictors of employment among 233 adult refugee men living in South-East Queensland, Australia. Participants were interviewed four times at six-month intervals between 2008 and 2010. Using a conceptual model developed from the literature, Generalised Estimating Equations were used to model the predictors of employment. Over time, the employment rate increased from 44 percent to 56 percent. Region of birth, length of time in Australia, seeking employment through job service providers and informal networks, and owning a car were significant predictors of employment. Contrary to previous research, English language proficiency was not a significant predictor when other variables were controlled for. Recognition of overseas skills and qualifications decreased the chances of finding employment. The policy and program implications are discussed.
Resumo:
Background: Adolescent idiopathic scoliosis (AIS) is a deformity of the spine, which may 34 require surgical correction by attaching a rod to the patient’s spine using screws 35 implanted in the vertebral bodies. Surgeons achieve an intra-operative reduction in the 36 deformity by applying compressive forces across the intervertebral disc spaces while 37 they secure the rod to the vertebra. We were interested to understand how the 38 deformity correction is influenced by increasing magnitudes of surgical corrective forces 39 and what tissue level stresses are predicted at the vertebral endplates due to the 40 surgical correction. 41 Methods: Patient-specific finite element models of the osseoligamentous spine and 42 ribcage of eight AIS patients who underwent single rod anterior scoliosis surgery were 43 created using pre-operative computed tomography (CT) scans. The surgically altered 44 spine, including titanium rod and vertebral screws, was simulated. The models were 45 analysed using data for intra-operatively measured compressive forces – three load 46 profiles representing the mean and upper and lower standard deviation of this data 47 were analysed. Data for the clinically observed deformity correction (Cobb angle) were 48 compared with the model-predicted correction and the model results investigated to 49 better understand the influence of increased compressive forces on the biomechanics of 50 the instrumented joints. 51 Results: The predicted corrected Cobb angle for seven of the eight FE models were 52 within the 5° clinical Cobb measurement variability for at least one of the force profiles. 53 The largest portion of overall correction was predicted at or near the apical 54 intervertebral disc for all load profiles. Model predictions for four of the eight patients 55 showed endplate-to-endplate contact was occurring on adjacent endplates of one or 56 more intervertebral disc spaces in the instrumented curve following the surgical loading 57 steps. 58 Conclusion: This study demonstrated there is a direct relationship between intra-59 operative joint compressive forces and the degree of deformity correction achieved. The 60 majority of the deformity correction will occur at or in adjacent spinal levels to the apex 61 of the deformity. This study highlighted the importance of the intervertebral disc space 62 anatomy in governing the coronal plane deformity correction and the limit of this 63 correction will be when bone-to-bone contact of the opposing vertebral endplates 64 occurs.
Resumo:
As the world’s population is growing, so is the demand for agricultural products. However, natural nitrogen (N) fixation and phosphorus (P) availability cannot sustain the rising agricultural production, thus, the application of N and P fertilisers as additional nutrient sources is common. It is those anthropogenic activities that can contribute high amounts of organic and inorganic nutrients to both surface and groundwaters resulting in degradation of water quality and a possible reduction of aquatic life. In addition, runoff and sewage from urban and residential areas can contain high amounts of inorganic and organic nutrients which may also affect water quality. For example, blooms of the cyanobacterium Lyngbya majuscula along the coastline of southeast Queensland are an indicator of at least short term decreases of water quality. Although Australian catchments, including those with intensive forms of land use, show in general a low export of nutrients compared to North American and European catchments, certain land use practices may still have a detrimental effect on the coastal environment. Numerous studies are reported on nutrient cycling and associated processes on a catchment scale in the Northern Hemisphere. Comparable studies in Australia, in particular in subtropical regions are, however, limited and there is a paucity in the data, in particular for inorganic and organic forms of nitrogen and phosphorus; these nutrients are important limiting factors in surface waters to promote algal blooms. Therefore, the monitoring of N and P and understanding the sources and pathways of these nutrients within a catchment is important in coastal zone management. Although Australia is the driest continent, in subtropical regions such as southeast Queensland, rainfall patterns have a significant effect on runoff and thus the nutrient cycle at a catchment scale. Increasingly, these rainfall patterns are becoming variable. The monitoring of these climatic conditions and the hydrological response of agricultural catchments is therefore also important to reduce the anthropogenic effects on surface and groundwater quality. This study consists of an integrated hydrological–hydrochemical approach that assesses N and P in an environment with multiple land uses. The main aim is to determine the nutrient cycle within a representative coastal catchment in southeast Queensland, the Elimbah Creek catchment. In particular, the investigation confirms the influence associated with forestry and agriculture on N and P forms, sources, distribution and fate in the surface and groundwaters of this subtropical setting. In addition, the study determines whether N and P are subject to transport into the adjacent estuary and thus into the marine environment; also considered is the effect of local topography, soils and geology on N and P sources and distribution. The thesis is structured on four components individually reported. The first paper determines the controls of catchment settings and processes on stream water, riverbank sediment, and shallow groundwater N and P concentrations, in particular during the extended dry conditions that were encountered during the study. Temporal and spatial factors such as seasonal changes, soil character, land use and catchment morphology are considered as well as their effect on controls over distributions of N and P in surface waters and associated groundwater. A total number of 30 surface and 13 shallow groundwater sampling sites were established throughout the catchment to represent dominant soil types and the land use upstream of each sampling location. Sampling comprises five rounds and was conducted over one year between October 2008 and November 2009. Surface water and groundwater samples were analysed for all major dissolved inorganic forms of N and for total N. Phosphorus was determined in the form of dissolved reactive P (predominantly orthophosphate) and total P. In addition, extracts of stream bank sediments and soil grab samples were analysed for these N and P species. Findings show that major storm events, in particular after long periods of drought conditions, are the driving force of N cycling. This is expressed by higher inorganic N concentrations in the agricultural subcatchment compared to the forested subcatchment. Nitrate N is the dominant inorganic form of N in both the surface and groundwaters and values are significantly higher in the groundwaters. Concentrations in the surface water range from 0.03 to 0.34 mg N L..1; organic N concentrations are considerably higher (average range: 0.33 to 0.85 mg N L..1), in particular in the forested subcatchment. Average NO3-N in the groundwater has a range of 0.39 to 2.08 mg N L..1, and organic N averages between 0.07 and 0.3 mg N L..1. The stream bank sediments are dominated by organic N (range: 0.53 to 0.65 mg N L..1), and the dominant inorganic form of N is NH4-N with values ranging between 0.38 and 0.41 mg N L..1. Topography and soils, however, were not to have a significant effect on N and P concentrations in waters. Detectable phosphorus in the surface and groundwaters of the catchment is limited to several locations typically in the proximity of areas with intensive animal use; in soil and sediments, P is negligible. In the second paper, the stable isotopes of N (14N/15N) and H2O (16O/18O and 2H/H) in surface and groundwaters are used to identify sources of dissolved inorganic and organic N in these waters, and to determine their pathways within the catchment; specific emphasis is placed on the relation of forestry and agriculture. Forestry is predominantly concentrated in the northern subcatchment (Beerburrum Creek) while agriculture is mainly found in the southern subcatchment (Six Mile Creek). Results show that agriculture (horticulture, crops, grazing) is the main source of inorganic N in the surface waters of the agricultural subcatchment, and their isotopic signature shows a close link to evaporation processes that may occur during water storage in farm dams that are used for irrigation. Groundwaters are subject to denitrification processes that may result in reduced dissolved inorganic N concentrations. Soil organic matter delivers most of the inorganic N to the surface water in the forested subcatchment. Here, precipitation and subsequently runoff is the main source of the surface waters. Groundwater in this area is affected by agricultural processes. The findings also show that the catchment can attenuate the effects of anthropogenic land use on surface water quality. Riparian strips of natural remnant vegetation, commonly 50 to 100 m in width, act as buffer zones along the drainage lines in the catchment and remove inorganic N from the soil water before it enters the creek. These riparian buffer zones are common in most agricultural catchments of southeast Queensland and are indicated to reduce the impact of agriculture on stream water quality and subsequently on the estuary and marine environments. This reduction is expressed by a significant decrease in DIN concentrations from 1.6 mg N L..1 to 0.09 mg N L..1, and a decrease in the �15N signatures from upstream surface water locations downstream to the outlet of the agricultural subcatchment. Further testing is, however, necessary to confirm these processes. Most importantly, the amount of N that is transported to the adjacent estuary is shown to be negligible. The third and fourth components of the thesis use a hydrological catchment model approach to determine the water balance of the Elimbah Creek catchment. The model is then used to simulate the effects of land use on the water balance and nutrient loads of the study area. The tool that is used is the internationally widely applied Soil and Water Assessment Tool (SWAT). Knowledge about the water cycle of a catchment is imperative in nutrient studies as processes such as rainfall, surface runoff, soil infiltration and routing of water through the drainage system are the driving forces of the catchment nutrient cycle. Long-term information about discharge volumes of the creeks and rivers do, however, not exist for a number of agricultural catchments in southeast Queensland, and such information is necessary to calibrate and validate numerical models. Therefore, a two-step modelling approach was used to calibrate and validate parameters values from a near-by gauged reference catchment as starting values for the ungauged Elimbah Creek catchment. Transposing monthly calibrated and validated parameter values from the reference catchment to the ungauged catchment significantly improved model performance showing that the hydrological model of the catchment of interest is a strong predictor of the water water balance. The model efficiency coefficient EF shows that 94% of the simulated discharge matches the observed flow whereas only 54% of the observed streamflow was simulated by the SWAT model prior to using the validated values from the reference catchment. In addition, the hydrological model confirmed that total surface runoff contributes the majority of flow to the surface water in the catchment (65%). Only a small proportion of the water in the creek is contributed by total base-flow (35%). This finding supports the results of the stable isotopes 16O/18O and 2H/H, which show the main source of water in the creeks is either from local precipitation or irrigation waters delivered by surface runoff; a contribution from the groundwater (baseflow) to the creeks could not be identified using 16O/18O and 2H/H. In addition, the SWAT model calculated that around 68% of the rainfall occurring in the catchment is lost through evapotranspiration reflecting the prevailing long-term drought conditions that were observed prior and during the study. Stream discharge from the forested subcatchment was an order of magnitude lower than discharge from the agricultural Six Mile Creek subcatchment. A change in land use from forestry to agriculture did not significantly change the catchment water balance, however, nutrient loads increased considerably. Conversely, a simulated change from agriculture to forestry resulted in a significant decrease of nitrogen loads. The findings of the thesis and the approach used are shown to be of value to catchment water quality monitoring on a wider scale, in particular the implications of mixed land use on nutrient forms, distributions and concentrations. The study confirms that in the tropics and subtropics the water balance is affected by extended dry periods and seasonal rainfall with intensive storm events. In particular, the comprehensive data set of inorganic and organic N and P forms in the surface and groundwaters of this subtropical setting acquired during the one year sampling program may be used in similar catchment hydrological studies where these detailed information is missing. Also, the study concludes that riparian buffer zones along the catchment drainage system attenuate the transport of nitrogen from agricultural sources in the surface water. Concentrations of N decreased from upstream to downstream locations and were negligible at the outlet of the catchment.
Resumo:
Context: The Ober and Thomas tests are subjective and involve a "negative" or "positive" assessment, making them difficult to apply within the paradigm of evidence-based medicine. No authors have combined the subjective clinical assessment with an objective measurement for these special tests. Objective: To compare the subjective assessment of iliotibial band and iliopsoas flexibility with the objective measurement of a digital inclinometer, to establish normative values, and to provide an evidence-based critical criterion for determining tissue tightness. Design: Cross-sectional study. Setting: Clinical research laboratory. Patients or Other Participants: Three hundred recreational athletes (125 men, 175 women; 250 in injured group, 50 in control group). Main Outcome Measure(s): Iliotibial band and iliopsoas muscle flexibility were determined subjectively using the modified Ober and Thomas tests, respectively. Using a digital inclinometer, we objectively measured limb position. lnterrater reliability for the subjective assessment was compared between 2 clinicians for a random sample of 100 injured participants, who were classified subjectively as either negative or positive for iliotibial band and iliopsoas tightness. Percentage of agreement indicated interrater reliability for the subjective assessment. Results: For iliotibial band flexibility, the average inclinometer angle was -24.59 degrees +/- 7.27 degrees. A total of 432 limbs were subjectively assessed as negative (-27.13 degrees +/- 5.53 degrees) and 168 as positive (-16.29 degrees +/- 6.87 degrees). For iliopsoas flexibility, the average inclinometer angle was -10.60 degrees +/- 9.61 degrees. A total of 392 limbs were subjectively assessed as negative (-15.51 degrees +/- 5.82 degrees) and 208 as positive (0.34 degrees +/- 7.00 degrees). The critical criteria for iliotibial band and iliopsoas flexibility were determined to be -23.16 degrees and -9.69 degrees, respectively. Between-clinicians agreement was very good, ranging from 95.0% to 97.6% for the Thomas and Ober tests, respectively. Conclusions: Subjective assessments and instrumented measurements were combined to establish normative values and critical criterions for tissue flexibility for the modified Ober and Thomas tests.
Resumo:
We present a rigorous validation of the analytical Amadei solution for the stress concentration around an arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients b11 and b55 are not equal. It is shown from theoretical considerations and published experimental data that the b11 and b55 are not equal for realistic rocks. Second, we develop a 3D finite element elastic model within a hybrid analytical–numerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic, transverse isotropic and orthorhombic symmetries. It is concluded that the analytical Amadei solution is valid with no restriction on the borehole orientation or the symmetry of the elastic anisotropy.
Resumo:
The purpose of this study was to examine how men account for the diagnosis in men of anorexia nervosa (AN), a condition commonly associated with women. Male students participated in focus group discussions of topics related to AN. Discussions were tape-recorded with participants' consent, transcribed, and then analyzed using discourse analysis. The participants spontaneously constructed AN as a female-specific condition. When asked to account for AN in men, they distanced AN from hegemonic masculinities in ways that sustained both dominant masculine identities and gender-specific constructions of AN. These findings show how issues of health and gender are interlinked in everyday understandings of AN. Future researchers might usefully consider how the construction of gender-specific illness implicates wider notions of both feminine and masculine gender identities.
Resumo:
Objective: To determine the frequency and nature of intern underperformance as documented on in-training assessment forms. Methods: A retrospective review of intern assessment forms from a 2 year period (2009–2010) was conducted at a tertiary referral hospital in Brisbane, Queensland. The frequency of interns assessed as ‘requiring substantial assistance’ and/or ‘requires further development’ on mid- or end-of-term assessment forms was determined. Forms were analysed by the clinical rotation, time of year and domain(s) of clinical practice in which underperformance was documented. Results: During 2009 and 2010 the overall documented incidence of intern underperformance was 2.4% (95% CI 1.5–3.9%). Clinical rotation in emergency medicine detected significantly more underperformance compared with other rotations (P < 0.01). Interns predominantly had difficulty with ‘clinical judgment and decision-making skills’, ‘time management skills’ and ‘teamwork and colleagues’ (62.5%, 55% and 32.5% of underperforming assessments, respectively). Time of the year did not affect frequency of underperformance. A proportion of 13.4% (95% CI 9.2–19.0%) of interns working at the institution over the study period received at least one assessment in which underperformance was documented. Seventy-six per cent of those interns who had underperformance identified by mid-term assessment successfully completed the term following remediation. Conclusion: The prevalence of underperformance among interns is low, although higher than previously suggested. Emergency medicine detects relatively more interns in difficulty than other rotations.
Resumo:
Diet Induced Thermogenesis (DIT) is the energy expended consequent to meal consumption, and reflects the energy required for the processing and digestion of food consumed throughout each day. Although DIT is the total energy expended across a day in digestive processes to a number of meals, most studies measure thermogenesis in response to a single meal (Meal Induced Thermogenesis: MIT) as a representation of an individual’s thermogenic response to acute food ingestion. As a component of energy expenditure, DIT may have a contributing role in weight gain and weight loss. While the evidence is inconsistent, research has tended to reveal a suppressed MIT response in obese compared to lean individuals, which identifies individuals with an efficient storage of food energy, hence a greater tendency for weight gain. Appetite is another factor regulating body weight through its influence on energy intake. Preliminary research has shown a potential link between MIT and postprandial appetite as both are responses to food ingestion and have a similar response dependent upon the macronutrient content of food. There is a growing interest in understanding how both MIT and appetite are modified with changes in diet, activity levels and body size. However, the findings from MIT research have been highly inconsistent, potentially due to the vastly divergent protocols used for its measurement. Therefore, the main theme of this thesis was firstly, to address some of the methodological issues associated with measuring MIT. Additionally this thesis aimed to measure postprandial appetite simultaneously to MIT to test for any relationships between these meal-induced variables and to assess changes that occur in MIT and postprandial appetite during periods of energy restriction (ER) and following weight loss. Two separate studies were conducted to achieve these aims. Based on the increasing prevalence of obesity, it is important to develop accurate methodologies for measuring the components potentially contributing to its development and to understand the variability within these variables. Therefore, the aim of Study One was to establish a protocol for measuring the thermogenic response to a single test meal (MIT), as a representation of DIT across a day. This was done by determining the reproducibility of MIT with a continuous measurement protocol and determining the effect of measurement duration. The benefit of a fixed resting metabolic rate (RMR), which is a single measure of RMR used to calculate each subsequent measure of MIT, compared to separate baseline RMRs, which are separate measures of RMR measured immediately prior to each MIT test meal to calculate each measure of MIT, was also assessed to determine the method with greater reproducibility. Subsidiary aims were to measure postprandial appetite simultaneously to MIT, to determine its reproducibility between days and to assess potential relationships between these two variables. Ten healthy individuals (5 males, 5 females, age = 30.2 ± 7.6 years, BMI = 22.3 ± 1.9 kg/m2, %Fat Mass = 27.6 ± 5.9%) undertook three testing sessions within a 1-4 week time period. During the first visit, participants had their body composition measured using DXA for descriptive purposes, then had an initial 30-minute measure of RMR to familiarise them with the testing and to be used as a fixed baseline for calculating MIT. During the second and third testing sessions, MIT was measured. Measures of RMR and MIT were undertaken using a metabolic cart with a ventilated hood to measure energy expenditure via indirect calorimetry with participants in a semi-reclined position. The procedure on each MIT test day was: 1) a baseline RMR measured for 30 minutes, 2) a 15-minute break in the measure to consume a standard 576 kcal breakfast (54.3% CHO, 14.3% PRO, 31.4% FAT), comprising muesli, milk toast, butter, jam and juice, and 3) six hours of measuring MIT with two, ten-minute breaks at 3 and 4.5 hours for participants to visit the bathroom. On the MIT test days, pre and post breakfast then at 45-minute intervals, participants rated their subjective appetite, alertness and comfort on visual analogue scales (VAS). Prior to each test, participants were required to be fasted for 12 hours, and have undertaken no high intensity physical activity for the previous 48 hours. Despite no significant group changes in the MIT response between days, individual variability was high with an average between-day CV of 33%, which was not significantly improved by the use of a fixed RMR to 31%. The 95% limits of agreements which ranged from 9.9% of energy intake (%EI) to -10.7%EI with the baseline RMRs and between 9.6%EI to -12.4%EI with the fixed RMR, indicated very large changes relative to the size of the average MIT response (MIT 1: 8.4%EI, 13.3%EI; MIT 2: 8.8%EI, 14.7%EI; baseline and fixed RMRs respectively). After just three hours, the between-day CV with the baseline RMR was 26%, which may indicate an enhanced MIT reproducibility with shorter measurement durations. On average, 76, 89, and 96% of the six-hour MIT response was completed within three, four and five hours, respectively. Strong correlations were found between MIT at each of these time points and the total six-hour MIT (range for correlations r = 0.990 to 0.998; P < 0.01). The reproducibility of the proportion of the six-hour MIT completed at 3, 4 and 5 hours was reproducible (between-day CVs ≤ 8.5%). This indicated the suitability to use shorter durations on repeated occasions and a similar percent of the total response to be completed. There was a lack of strong evidence of any relationship between the magnitude of the MIT response and subjective postprandial appetite. Given a six-hour protocol places a considerable burden on participants, these results suggests that a post-meal measurement period of only three hours is sufficient to produce valid information on the metabolic response to a meal. However while there was no mean change in MIT between test days, individual variability was large. Further research is required to better understand which factors best explain the between-day variability in this physiological measure. With such a high prevalence of obesity, dieting has become a necessity to reduce body weight. However, during periods of ER, metabolic and appetite adaptations can occur which may impede weight loss. Understanding how metabolic and appetite factors change during ER and weight loss is important for designing optimal weight loss protocols. The purpose of Study Two was to measure the changes in the MIT response and subjective postprandial appetite during either continuous (CONT) or intermittent (INT) ER and following post diet energy balance (post-diet EB). Thirty-six obese male participants were randomly assigned to either the CONT (Age = 38.6 ± 7.0 years, weight = 109.8 ± 9.2 kg, % fat mass = 38.2 ± 5.2%) or INT diet groups (Age = 39.1 ± 9.1 years, weight = 107.1 ± 12.5 kg, % fat mass = 39.6 ± 6.8%). The study was divided into three phases: a four-week baseline (BL) phase where participants were provided with a diet to maintain body weight, an ER phase lasting either 16 (CONT) or 30 (INT) weeks, where participants were provided with a diet which supplied 67% of their energy balance requirements to induce weight loss and an eight-week post-diet EB phase, providing a diet to maintain body weight post weight loss. The INT ER phase was delivered as eight, two-week blocks of ER interspersed with two-week blocks designed to achieve weight maintenance. Energy requirements for each phase were predicted based on measured RMR, and adjusted throughout the study to account for changes in RMR. All participants completed MIT and appetite tests during BL and the ER phase. Nine CONT and 15 INT participants completed the post-diet EB MIT and 14 INT and 15 CONT participants completed the post-diet EB appetite tests. The MIT test day protocol was as follows: 1) a baseline RMR measured for 30 minutes, 2) a 15-minute break in the measure to consume a standard breakfast meal (874 kcal, 53.3% CHO, 14.5% PRO, 32.2% FAT), and 3) three hours of measuring MIT. MIT was calculated as the energy expenditure above the pre-meal RMR. Appetite test days were undertaken on a separate day using the same 576 kcal breakfast used in Study One. VAS were used to assess appetite pre and post breakfast, at one hour post breakfast then a further three times at 45-minute intervals. Appetite ratings were calculated for hunger and fullness as both the intra-meal change in appetite and the AUC. The three-hour MIT response at BL, ER and post-diet EB respectively were 5.4 ± 1.4%EI, 5.1 ± 1.3%EI and 5.0 ± 0.8%EI for the CONT group and 4.4 ± 1.0%EI, 4.7 ± 1.0%EI and 4.8 ± 0.8%EI for the INT group. Compared to BL, neither group had significant changes in their MIT response during ER or post-diet EB. There were no significant time by group interactions (p = 0.17) indicating a similar response to ER and post-diet EB in both groups. Contrary to what was hypothesised, there was a significant increase in postprandial AUC fullness in response to ER in both groups (p < 0.05). However, there were no significant changes in any of the other postprandial hunger or fullness variables. Despite no changes in MIT in both the CONT or INT group in response to ER or post-diet EB and only a minor increase in postprandial AUC fullness, the individual changes in MIT and postprandial appetite in response to ER were large. However those with the greatest MIT changes did not have the greatest changes in postprandial appetite. This study shows that postprandial appetite and MIT are unlikely to be altered during ER and are unlikely to hinder weight loss. Additionally, there were no changes in MIT in response to weight loss, indicating that body weight did not influence the magnitude of the MIT response. There were large individual changes in both variables, however further research is required to determine whether these changes were real compensatory changes to ER or simply between-day variation. Overall, the results of this thesis add to the current literature by showing the large variability of continuous MIT measurements, which make it difficult to compare MIT between groups and in response to diet interventions. This thesis was able to provide evidence to suggest that shorter measures may provide equally valid information about the total MIT response and can therefore be utilised in future research in order to reduce the burden of long measurements durations. This thesis indicates that MIT and postprandial subjective appetite are most likely independent of each other. This thesis also shows that, on average, energy restriction was not associated with compensatory changes in MIT and postprandial appetite that would have impeded weight loss. However, the large inter-individual variability supports the need to examine individual responses in more detail.
Resumo:
Objective To evaluate the time course of the recovery of transverse strain in the Achilles and patellar tendon following a bout of resistance exercise. Methods Seventeen healthy adults underwent sonographic examination of the right patellar (n=9) and Achilles (n=8) tendons immediately prior to and following 90 repetitions of weight-bearing quadriceps and gastrocnemius-resistance exercise performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the enthesis and transverse strain, as defined by the stretch ratio, was repeatedly monitored over a 24 h recovery period. Results Resistance exercise resulted in an immediate decrease in Achilles (t7=10.6, p<0.01) and patellar (t8=8.9, p<0.01) tendon thickness, resulting in an average transverse stretch ratio of 0.86±0.04 and 0.82±0.05, which was not significantly different between tendons. The magnitude of the immediate transverse strain response, however, was reduced with advancing age (r=0.63, p<0.01). Recovery in transverse strain was prolonged compared with the duration of loading and exponential in nature. The average primary recovery time was not significantly different between the Achilles (6.5±3.2 h) and patellar (7.1±3.2 h) tendons. Body weight accounted for 62% and 64% of the variation in recovery time, respectively. Conclusions Despite structural and biochemical differences between the Achilles and patellar tendon, the mechanisms underlying transverse creep recovery in vivo appear similar and are highly time dependent. These novel findings have important implications concerning the time required for the mechanical recovery of high-stress tendons following an acute bout of exercise.
Resumo:
Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.
Resumo:
The book addresses a number of pressing social and environmental issues of global concern. It takes the reader on a socio-legal journal of climate change and explores a range of challenging and complex topics including renewable energies, emissions reduction, carbon trading, deforestation, migration and corporate governance.
Resumo:
The INEX workshop is concerned with evaluating the effectiveness of XML retrieval systems. In 2004 a natural language query task was added to the INEX Ad hoc track. Standard INEX Ad hoc topic titles are specified in NEXI -- a simplified and restricted subset of XPath, with a similar feel, and yet with a distinct IR flavour and interpretation. The syntax of NEXI is rigid and it imposes some limitations on the kind of information need that it can faithfully capture. At INEX 2004 the NLP question to be answered was simple -- is it practical to use a natural language query that is the equivalent of the formal NEXI title? The results of this experiment are reported and some information on the future direction of the NLP task is presented.
Resumo:
Several tests have been devised in an attempt to detect behaviour modification due to training, supplements or diet in horses. These tests rely on subjective observations in combination with physiological measures, such as heart rate (HR) and plasma cortisol concentrations, but these measures do not definitively identify behavioural changes. The aim of the present studies was to develop an objective and relevant measure of horse reactivity. In Study 1, HR responses to auditory stimuli, delivered over 6 days, designed to safely startle six geldings confined to individual stalls was studied to determine if peak HR, unconfounded by physical exertion, was a reliable measure of reactivity. Both mean (±SEM) resting HR (39.5 ± 1.9 bpm) and peak HR (82 ± 5.5 bpm) in response to being startled in all horses were found to be consistent over the 6 days. In Study 2, HR, plasma cortisol concentrations and speed of departure from an enclosure (reaction speed (RS)) in response to a single stimulus of six mares were measured when presented daily over 6 days. Peak HR response (133 ± 4 bpm) was consistent over days for all horses, but RS increased (3.02 ± 0.72 m/s on Day 1 increasing to 4.45 ± 0.53 m/s on Day 6; P = 0.005). There was no effect on plasma cortisol, so this variable was not studied further. In Study 3, using the six geldings from Study 1, the RS test was refined and a different startle stimulus was used each day. Again, there was no change in peak HR (97.2 ± 5.8 bpm) or RS (2.9 ± 0.2 m/s on Day 1 versus 3.0 ± 0.7 m/s on Day 6) over time. In the final study, mild sedation using acepromazine maleate (0.04 mg/kg BW i.v.) decreased peak HR in response to a startle stimulus when the horses (n = 8) were confined to a stall (P = 0.006), but not in an outdoor environment when the RS test was performed. However, RS was reduced by the mild sedation (P = 0.02). In conclusion, RS may be used as a practical and objective test to measure both reactivity and changes in reactivity in horses.
Resumo:
Background The largest proportion of cancer patients are aged 65 years and over. Increasing age is also associated with nutritional risk and multi-morbidities—factors which complicate the cancer treatment decision-making process in older patients. Objectives To determine whether malnutrition risk and Body Mass Index (BMI) are associated with key oncogeriatric variables as potential predictors of chemotherapy outcomes in geriatric oncology patients with solid tumours. Methods In this longitudinal study, geriatric oncology patients (aged ≥65 years) received a Comprehensive Geriatric Assessment (CGA) for baseline data collection prior to the commencement of chemotherapy treatment. Malnutrition risk was assessed using the Malnutrition Screening Tool (MST) and BMI was calculated using anthropometric data. Nutritional risk was compared with other variables collected as part of standard CGA. Associations were determined by chi-square tests and correlations. Results Over half of the 175 geriatric oncology patients were at risk of malnutrition (53.1%) according to MST. BMI ranged from 15.5–50.9kg/m2, with 35.4% of the cohort overweight when compared to geriatric cutoffs. Malnutrition risk was more prevalent in those who were underweight (70%) although many overweight participants presented as at risk (34%). Malnutrition risk was associated with a diagnosis of colorectal or lung cancer (p=0.001), dependence in activities of daily living (p=0.015) and impaired cognition (p=0.049). Malnutrition risk was positively associated with vulnerability to intensive cancer therapy (rho=0.16, p=0.038). Larger BMI was associated with a greater number of multi-morbidities (rho =.27, p=0.001. Conclusions Malnutrition risk is prevalent among geriatric patients undergoing chemotherapy, is more common in colorectal and lung cancer diagnoses, is associated with impaired functionality and cognition and negatively influences ability to complete planned intensive chemotherapy.
Resumo:
Background: Malnutrition before and during chemotherapy is associated with poor treatment outcomes. The risk of cancer-related malnutrition is exacerbated by common nutrition impact symptoms during chemotherapy, such as nausea, diarrhoea and mucositis. Aim of presentation: To describe the prevalence of malnutrition/ malnutrition risk in two samples of patients treated in a quaternary-level chemotherapy unit. Research design: Cross sectional survey. Sample 1: Patients ≥ 65 years prior to chemotherapy treatment (n=175). Instrument: Nurse-administered Malnutrition Screening Tool to screen for malnutrition risk and body mass index (BMI). Sample 2: Patients ≥ 18 years receiving chemotherapy (n=121). Instrument: Dietitian-administered Patient Generated Subjective Global Assessment to assess malnutrition, malnutrition risk and BMI. Findings Sample 1: 93/175 (53%) of older patients were at risk of malnutrition prior to chemotherapy. 27 (15%) were underweight (BMI <21.9); 84 (48%) were overweight (BMI >27). Findings Sample 2: 31/121 patients (26%) were malnourished; 12 (10%) had intake-limiting nausea or vomiting; 22 (20%) reported significant weight loss; and 20 (18%) required improved nutritional symptom management during treatment. 13 participants with malnutrition/nutrition impact symptoms (35%) had no dietitian contact; the majority of these participants were overweight. Implications for nursing: Patients with, or at risk of, malnutrition before and during chemotherapy can be overlooked, particularly if they are overweight. Older patients seem particularly at risk. Nurses can easily and quickly identify risk with the regular use of the Malnutrition Screening Tool, and refer patients to expert dietetic support, to ensure optimal treatment outcomes.