996 resultados para 510
Resumo:
The aim of this work is to find simple formulas for the moments mu_n for all families of classical orthogonal polynomials listed in the book by Koekoek, Lesky and Swarttouw. The generating functions or exponential generating functions for those moments are given.
Resumo:
Dieser Werkstattbericht gibt einen Einblick in ein Promotionsvorhaben im Bereich der universitären Mathematikdidaktik. 15 Studierende des Grundschullehramts wurden mit leitfadengestützten materialbasierten Interviews zur Zahldarstellung in Stellenwertsystemen, einem zentralen Thema ihrer Mathematikausbildung, befragt. Wir stellen hier Kategorien vor, die anhand der Interview-Daten identifiziert wurden, und erste strukturelle Beschreibungen von Vorstellungen und Hürden sowie Spezifika eines adäquaten Verständnisses zum Bündelungsprinzip liefern, welches sich zugleich als fachlicher Inhalt, als (ggf. nur mentaler) Handlungsprozess und als mathematische Darstellung verstehen lässt.
Resumo:
In diesem Werkstattbericht wollen wir den derzeitigen Arbeitsstand des Teilprojekts "Mathematik für Maschinenbauer" der AG Ing-Math vorstellen. Es werden eine Reihe von Anwendungsaufgaben, sowie deren Lösungen und das zugrunde liegende Konzept vorgestellt. Die Aufgaben sind für die Veranstaltungen Mathematik 1 und 2 für Maschinenbauer konzipiert, jedoch lässt sich das Konzept auch auf andere ingenieurwissenschaftliche Studiengänge übertragen. Das Ziel ist es mit diesen Aufgaben die Motivation zu fördern und den Studierenden die Relevanz der Mathematik bereits in den ersten Semestern zu verdeutlichen.
Resumo:
Im Zuge der Verbesserung der Lehre an deutschen Hochschulen und Universitäten sind in den letzten Jahren bereits vielfältige Innovationen hinsichtlich der Gestaltung von Vorlesungen und Seminaren in den unterschiedlichen Fachdisziplinen deutlich geworden. Bei größeren Vorlesungen besteht das Problem eine kognitive Mitarbeit von allen Studierenden zu fördern, vor allem in Mathematikvorlesungen. In den letzten Jahren konnten bereits vielversprechende Gestaltungsmöglichkeiten im Bereich der Fachmathematikvorlesungen eingesetzt werden, die ganz im Trend der digitalen Medien liegen. Diese sind aus dem Alltag vieler Berufsgruppen, wie auch der Lehre und in der Freizeit nicht mehr wegzudenken. Im Folgenden wird eine Pilotstudie mit ersten Ergebnissen beschrieben. Das Projekt M@thWithApps startete im WS 2012/2013 in der Fachvorlesung „Mathematische Anwendungen“ mit 120 Studierenden des Grundschullehramts an der Universität Kassel. Die Studierenden wurden mit Tablet-PCs ausgestattet, die über den gesamten Vorlesungs- und Übungszeitraum eingesetzt wurden. Somit stellt sich die Frage nach den Chancen und Risiken dieser besonderen Form des Lernens, verbunden mit einem Tablet-PC.
Resumo:
In this work, we have mainly achieved the following: 1. we provide a review of the main methods used for the computation of the connection and linearization coefficients between orthogonal polynomials of a continuous variable, moreover using a new approach, the duplication problem of these polynomial families is solved; 2. we review the main methods used for the computation of the connection and linearization coefficients of orthogonal polynomials of a discrete variable, we solve the duplication and linearization problem of all orthogonal polynomials of a discrete variable; 3. we propose a method to generate the connection, linearization and duplication coefficients for q-orthogonal polynomials; 4. we propose a unified method to obtain these coefficients in a generic way for orthogonal polynomials on quadratic and q-quadratic lattices. Our algorithmic approach to compute linearization, connection and duplication coefficients is based on the one used by Koepf and Schmersau and on the NaViMa algorithm. Our main technique is to use explicit formulas for structural identities of classical orthogonal polynomial systems. We find our results by an application of computer algebra. The major algorithmic tools for our development are Zeilberger’s algorithm, q-Zeilberger’s algorithm, the Petkovšek-van-Hoeij algorithm, the q-Petkovšek-van-Hoeij algorithm, and Algorithm 2.2, p. 20 of Koepf's book "Hypergeometric Summation" and it q-analogue.
Resumo:
A large class of special functions are solutions of systems of linear difference and differential equations with polynomial coefficients. For a given function, these equations considered as operator polynomials generate a left ideal in a noncommutative algebra called Ore algebra. This ideal with finitely many conditions characterizes the function uniquely so that Gröbner basis techniques can be applied. Many problems related to special functions which can be described by such ideals can be solved by performing elimination of appropriate noncommutative variables in these ideals. In this work, we mainly achieve the following: 1. We give an overview of the theoretical algebraic background as well as the algorithmic aspects of different methods using noncommutative Gröbner elimination techniques in Ore algebras in order to solve problems related to special functions. 2. We describe in detail algorithms which are based on Gröbner elimination techniques and perform the creative telescoping method for sums and integrals of special functions. 3. We investigate and compare these algorithms by illustrative examples which are performed by the computer algebra system Maple. This investigation has the objective to test how far noncommutative Gröbner elimination techniques may be efficiently applied to perform creative telescoping.
Resumo:
In the theory of the Navier-Stokes equations, the proofs of some basic known results, like for example the uniqueness of solutions to the stationary Navier-Stokes equations under smallness assumptions on the data or the stability of certain time discretization schemes, actually only use a small range of properties and are therefore valid in a more general context. This observation leads us to introduce the concept of SST spaces, a generalization of the functional setting for the Navier-Stokes equations. It allows us to prove (by means of counterexamples) that several uniqueness and stability conjectures that are still open in the case of the Navier-Stokes equations have a negative answer in the larger class of SST spaces, thereby showing that proof strategies used for a number of classical results are not sufficient to affirmatively answer these open questions. More precisely, in the larger class of SST spaces, non-uniqueness phenomena can be observed for the implicit Euler scheme, for two nonlinear versions of the Crank-Nicolson scheme, for the fractional step theta scheme, and for the SST-generalized stationary Navier-Stokes equations. As far as stability is concerned, a linear version of the Euler scheme, a nonlinear version of the Crank-Nicolson scheme, and the fractional step theta scheme turn out to be non-stable in the class of SST spaces. The positive results established in this thesis include the generalization of classical uniqueness and stability results to SST spaces, the uniqueness of solutions (under smallness assumptions) to two nonlinear versions of the Euler scheme, two nonlinear versions of the Crank-Nicolson scheme, and the fractional step theta scheme for general SST spaces, the second order convergence of a version of the Crank-Nicolson scheme, and a new proof of the first order convergence of the implicit Euler scheme for the Navier-Stokes equations. For each convergence result, we provide conditions on the data that guarantee the existence of nonstationary solutions satisfying the regularity assumptions needed for the corresponding convergence theorem. In the case of the Crank-Nicolson scheme, this involves a compatibility condition at the corner of the space-time cylinder, which can be satisfied via a suitable prescription of the initial acceleration.
Resumo:
Diese Lecture Note beinhaltet drei Beiträge zur lehramts-orientierten elementaren Mathematik. Ein 1. Beitrag liefert Module der elementaren Mengenlehre und Ordnungstheorie, Algebra und Informatik, Geometrie und Stochastik, ein 2.Beitrag liefert Zitate großer Meister und großer Geister und ein 3.Beitrag ist den Elementen der Analysis gewidmet.
Resumo:
Thema der vorliegenden Arbeit ist die Bestimmung von Basen von Räumen spezieller harmonischer 2-Koketten auf Bruhat-Tits-Gebäuden der PGL(3) über Funktionenkörpern. Hierzu wird der Raum der speziellen harmonischen 2-Koketten auf dem Bruhat-Tits-Gebäude der PGL(3) zunächst mit gewissen komplexen Linearkombinationen von 2-Simplizes des Quotientenkomplexes, sogenannten geschlossenen Flächen, identifiziert und anschließend durch verallgemeinerte Modulsymbole beschrieben. Die Darstellung der Gruppe der Modulsymbole durch Erzeuger und Relationen ermöglicht die Bestimmung einer endlichen Basis des Raums der speziellen harmonischen 2-Koketten. Die so gewonnenen Erkenntnisse können zur Untersuchung von Hecke-Operatoren auf speziellen harmonischen 2-Koketten genutzt werden. Mithilfe des hergeleiteten Isomorphismus zwischen dem Raum der speziellen harmonischen 2-Koketten und dem Raum der geschlossenen Flächen wird die Theorie der Hecke-Operatoren auf den Raum der geschlossenen Flächen übertragen. Dies ermöglicht die Berechnung von Abbildungsmatrizen der Hecke-Operatoren auf dem Raum der harmonischen 2-Koketten durch die Auswertung auf den geschlossenen Flächen.
Resumo:
The set of integers forms a commutative ring whose elements admit a unique decomposition into primes. In this folder three lecture notes are bound, concerning topics, developed by dropping or replacing special properties of this most natural and most special ring. For short: investigated are groupoids w.r.t the interplay of multiplication - on the one hand - and divisibility, ideal decomposition and residuation, respectively, on the other hand.
Resumo:
In dieser Lecture Note sind Inhalte der Linearen Algebra, der Algebra, der Ringtheorie, der Ordnungs- und der Graphentheorie gebündelt, so wie sie der Autor - verteilt auf Vorlesungen, Übungen, Seminare und Staatsexamens- bzw. Diplom-Anteile während seiner aktiven Zeit als Hochschullehrer wiederholt angeboten bzw. eingefordert hat.
Resumo:
In der algebraischen Kryptoanalyse werden moderne Kryptosysteme als polynomielle, nichtlineare Gleichungssysteme dargestellt. Das Lösen solcher Gleichungssysteme ist NP-hart. Es gibt also keinen Algorithmus, der in polynomieller Zeit ein beliebiges nichtlineares Gleichungssystem löst. Dennoch kann man aus modernen Kryptosystemen Gleichungssysteme mit viel Struktur generieren. So sind diese Gleichungssysteme bei geeigneter Modellierung quadratisch und dünn besetzt, damit nicht beliebig. Dafür gibt es spezielle Algorithmen, die eine Lösung solcher Gleichungssysteme finden. Ein Beispiel dafür ist der ElimLin-Algorithmus, der mit Hilfe von linearen Gleichungen das Gleichungssystem iterativ vereinfacht. In der Dissertation wird auf Basis dieses Algorithmus ein neuer Solver für quadratische, dünn besetzte Gleichungssysteme vorgestellt und damit zwei symmetrische Kryptosysteme angegriffen. Dabei sind die Techniken zur Modellierung der Chiffren von entscheidender Bedeutung, so das neue Techniken entwickelt werden, um Kryptosysteme darzustellen. Die Idee für das Modell kommt von Cube-Angriffen. Diese Angriffe sind besonders wirksam gegen Stromchiffren. In der Arbeit werden unterschiedliche Varianten klassifiziert und mögliche Erweiterungen vorgestellt. Das entstandene Modell hingegen, lässt sich auch erfolgreich auf Blockchiffren und auch auf andere Szenarien erweitern. Bei diesen Änderungen muss das Modell nur geringfügig geändert werden.
Resumo:
Die Berechnung des 1912 von Birkhoff eingeführten chromatischen Polynoms eines Graphen stellt bekanntlich ein NP-vollständiges Problem dar. Dieses gilt somit erst recht für die Verallgemeinerung des chromatischen Polynoms zum bivariaten chromatischen Polynom nach Dohmen, Pönitz und Tittmann aus dem Jahre 2003. Eine von Averbouch, Godlin und Makowsky 2008 vorgestellte Rekursionsformel verursacht durch wiederholte Anwendung im Allgemeinen einen exponentiellen Rechenaufwand. Daher war das Ziel der vorliegenden Dissertation, Vereinfachungen zur Berechnung des bivariaten chromatischen Polynoms spezieller Graphentypen zu finden. Hierbei wurden folgende Resultate erzielt: Für Vereinigungen von Sternen, für vollständige Graphen, aus welchen die Kanten von Sternen mit paarweise voneinander verschiedenen Ecken gelöscht wurden, für spezielle Splitgraphen und für vollständig partite Graphen konnten rekursionsfreie Gleichungen zur Berechnung des bivariaten chromatischen Polynoms mit jeweils linear beschränkter Rechenzeit gefunden werden. Weiterhin werden Möglichkeiten der Reduktion allgemeiner Splitgraphen, bestimmter bipartiter Graphen sowie vollständig partiter Graphen vorgestellt. Bei letzteren erweist sich eine hierbei gefundene Rekursionsformel durch eine polynomiell beschränkte Laufzeit als effektive Methode. Ferner konnte in einem Abschnitt zu Trennern in Graphen gezeigt werden, dass der Spezialfall der trennenden Cliquen, welcher im univariaten Fall sehr einfach ist, im bivariaten Fall sehr komplexe Methoden erfordert. Ein Zusammenhang zwischen dem bivariaten chromatischen Polynom und dem Matchingpolynom wurde für vollständige Graphen, welchen die Kanten von Sternen mit paarweise voneinander verschiedenen Ecken entnommen wurden, sowie für Bicliquen hergestellt. Die vorliegende Dissertation liefert darüber hinaus auch einige Untersuchungen zum trivariaten chromatischen Polynom, welches auf White (2011) zurückgeht und eine weitere Verallgemeinerung des bivariaten chromatischen Polynoms darstellt. Hierbei konnte gezeigt werden, dass dessen Berechnung selbst für einfache Graphentypen schon recht kompliziert ist. Dieses trifft sogar dann noch zu, wenn man die einzelnen Koeffizienten als bivariate Polynome abspaltet und einzeln berechnet. Abschließend stellt die Arbeit zu vielen Resultaten Implementierungen mit dem Computeralgebrasystem Mathematica bereit, welche zahlreiche Möglichkeiten zu eigenständigen Versuchen bieten.
Resumo:
Es ist allgemein bekannt, dass sich zwei gegebene Systeme spezieller Funktionen durch Angabe einer Rekursionsgleichung und entsprechend vieler Anfangswerte identifizieren lassen, denn computeralgebraisch betrachtet hat man damit eine Normalform vorliegen. Daher hat sich die interessante Forschungsfrage ergeben, Funktionensysteme zu identifizieren, die über ihre Rodriguesformel gegeben sind. Zieht man den in den 1990er Jahren gefundenen Zeilberger-Algorithmus für holonome Funktionenfamilien hinzu, kann die Rodriguesformel algorithmisch in eine Rekursionsgleichung überführt werden. Falls die Funktionenfamilie überdies hypergeometrisch ist, sogar laufzeiteffizient. Um den Zeilberger-Algorithmus überhaupt anwenden zu können, muss es gelingen, die Rodriguesformel in eine Summe umzuwandeln. Die vorliegende Arbeit beschreibt die Umwandlung einer Rodriguesformel in die genannte Normalform für den kontinuierlichen, den diskreten sowie den q-diskreten Fall vollständig. Das in Almkvist und Zeilberger (1990) angegebene Vorgehen im kontinuierlichen Fall, wo die in der Rodriguesformel auftauchende n-te Ableitung über die Cauchysche Integralformel in ein komplexes Integral überführt wird, zeigt sich im diskreten Fall nun dergestalt, dass die n-te Potenz des Vorwärtsdifferenzenoperators in eine Summenschreibweise überführt wird. Die Rekursionsgleichung aus dieser Summe zu generieren, ist dann mit dem diskreten Zeilberger-Algorithmus einfach. Im q-Fall wird dargestellt, wie Rekursionsgleichungen aus vier verschiedenen q-Rodriguesformeln gewonnen werden können, wobei zunächst die n-te Potenz der jeweiligen q-Operatoren in eine Summe überführt wird. Drei der vier Summenformeln waren bislang unbekannt. Sie wurden experimentell gefunden und per vollständiger Induktion bewiesen. Der q-Zeilberger-Algorithmus erzeugt anschließend aus diesen Summen die gewünschte Rekursionsgleichung. In der Praxis ist es sinnvoll, den schnellen Zeilberger-Algorithmus anzuwenden, der Rekursionsgleichungen für bestimmte Summen über hypergeometrische Terme ausgibt. Auf dieser Fassung des Algorithmus basierend wurden die Überlegungen in Maple realisiert. Es ist daher sinnvoll, dass alle hier aufgeführten Prozeduren, die aus kontinuierlichen, diskreten sowie q-diskreten Rodriguesformeln jeweils Rekursionsgleichungen erzeugen, an den hypergeometrischen Funktionenfamilien der klassischen orthogonalen Polynome, der klassischen diskreten orthogonalen Polynome und an der q-Hahn-Klasse des Askey-Wilson-Schemas vollständig getestet werden. Die Testergebnisse liegen tabellarisch vor. Ein bedeutendes Forschungsergebnis ist, dass mit der im q-Fall implementierten Prozedur zur Erzeugung einer Rekursionsgleichung aus der Rodriguesformel bewiesen werden konnte, dass die im Standardwerk von Koekoek/Lesky/Swarttouw(2010) angegebene Rodriguesformel der Stieltjes-Wigert-Polynome nicht korrekt ist. Die richtige Rodriguesformel wurde experimentell gefunden und mit den bereitgestellten Methoden bewiesen. Hervorzuheben bleibt, dass an Stelle von Rekursionsgleichungen analog Differential- bzw. Differenzengleichungen für die Identifikation erzeugt wurden. Wie gesagt gehört zu einer Normalform für eine holonome Funktionenfamilie die Angabe der Anfangswerte. Für den kontinuierlichen Fall wurden umfangreiche, in dieser Gestalt in der Literatur noch nie aufgeführte Anfangswertberechnungen vorgenommen. Im diskreten Fall musste für die Anfangswertberechnung zur Differenzengleichung der Petkovsek-van-Hoeij-Algorithmus hinzugezogen werden, um die hypergeometrischen Lösungen der resultierenden Rekursionsgleichungen zu bestimmen. Die Arbeit stellt zu Beginn den schnellen Zeilberger-Algorithmus in seiner kontinuierlichen, diskreten und q-diskreten Variante vor, der das Fundament für die weiteren Betrachtungen bildet. Dabei wird gebührend auf die Unterschiede zwischen q-Zeilberger-Algorithmus und diskretem Zeilberger-Algorithmus eingegangen. Bei der praktischen Umsetzung wird Bezug auf die in Maple umgesetzten Zeilberger-Implementationen aus Koepf(1998/2014) genommen. Die meisten der umgesetzten Prozeduren werden im Text dokumentiert. Somit wird ein vollständiges Paket an Algorithmen bereitgestellt, mit denen beispielsweise Formelsammlungen für hypergeometrische Funktionenfamilien überprüft werden können, deren Rodriguesformeln bekannt sind. Gleichzeitig kann in Zukunft für noch nicht erforschte hypergeometrische Funktionenklassen die beschreibende Rekursionsgleichung erzeugt werden, wenn die Rodriguesformel bekannt ist.
Resumo:
Dieser Werkstattbericht ist die zweite, verbesserte und um weitere Aufgaben ergänzte Version der Veröffentlichung von 2014. Hier wollen wir den aktuellen Arbeitsstand des Teilprojekts "Mathematik für Maschinenbauer" der AG Ing-Math vorstellen. Es werden eine Reihe von Anwendungsaufgaben und das zugrunde liegende Konzept vorgestellt. Die Aufgaben sind für die Veranstaltungen Mathematik 1 und 2 für Maschinenbauer konzipiert, jedoch lässt sich das Konzept auch auf andere ingenieurwissenschaftliche Studiengänge übertragen. Das Ziel ist es mit diesen Aufgaben die Motivation zu fördern und den Studierenden die Relevanz der Mathematik bereits in den ersten Semestern zu verdeutlichen.