996 resultados para 4 methoxy n methylphenethylamine
Resumo:
The microorganism Mucor piriformis transforms androst-4-ene-3,17-dione into a major and several minor metabolites. X-ray crystallographic analysis of two of these metabolites was undertaken to determine unambiguously their composition and chirality. Crystals belong to the orthorhombic space-group P2(1)2(1)2(1), with a = 7.199(4) angstrom and a = 6.023(3) angstrom, b = 11.719(3) angstrom and b = 13.455(4) angstrom, c = 20.409(3) angstrom and c = 20.702(4) angstrom for the two title compounds, respectively. The structures have been refined to final R values of 0.060 and 0.040, respectively.
Resumo:
The temperature dependence of the chlorine-35 n.q.r. in the mercuric chloride-4-picoline N-oxide complex has been studied from 77 K to room temperature, and the results are used to assign the observed frequencies to terminal and bridging chlorines.
Resumo:
The signatures of the coexistence of para and ferromagnetic phases for the Fe3+ charge state of iron have been identified in the low temperature electron spin resonance (ESR) spectra in undoped CdZnTe (Zn similar to 4%) crystals and independently verified by superconducting quantum interference device (SQUID) and AC susceptibility measurements. In the paramagnetic phase the inverse of AC susceptibility follows the Curie-Weiss law. In the ferromagnetic phase the thermal evolution of magnetization follows the well-known Bloch T-3/2 law. This is further supported by the appearance of hysteresis in the SQUID measurements at 2 K below T-c which is expected to lie in between 2 and 2.5 K. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Recently we have reported the effect of (S)-6-aryl urea/thiourea substituted-2-amino-4,5,6,7-tetrahydrobenzod]thiazole derivatives as potent anti-leukemic agents. To elucidate further the Structure Activity Relationship (SAR) studies on the anti-leukemic activity of (S)-2,6-diamino-4,5,6,7 tetrahydrobenzod]thiazole moiety, a series of 2-arlycarboxamide substituted-(S)-6-amino-4,5,6,7-tetrahydrobenzod]thiazole were designed, synthesized and evaluated for their anti-leukemic activity by trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays and cell cycle analysis. Results suggest that the position, number and bulkiness of the substituent on the phenyl ring of aryl carboxamide moiety at 2nd position of 6-amino-4,5,6,7-tetrhydrobenzod]thiazole play a key role in inhibiting the proliferation of leukemia cells. Compounds with ortho substitution showed poor activity and with meta and para substitution showed good activity. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the biological system's ability to detoxify these reactive intermediates. Mammalian cells have elaborate antioxidant defense mechanisms to control the damaging effects of ROS. Glutathione peroxidase (GPx), a selenoenzyme, plays a key role in protecting the organism from oxidative damage by catalyzing the reduction of harmful hydroperoxides with thiol a ``catalytic triad'' with tryptophan and glutamine, which cofactors. The selenocysteine residue at the active site forms activates the selenium moiety for an efficient reduction of peroxides. After the discovery that ebselen, a synthetic organoselenium compound, mimics the catalytic activity of GPx both in vitro and in vivo, several research groups developed a number of small-molecule selenium compounds as functional mimics of GPx, either by modifying the basic structure of ebselen or by incorporating some structural features of the native enzyme. The synthetic mimics reported in the literature can be classified in three major categories: (i) cyclic selenenyl amides having a Se-N bond, (ii) diaryl diselenides, and (iii) aromatic or aliphatic monoselenides. Recent studies show that ebselen exhibits very poor GPx activity when aryl or benzylic thiols such as PhSH or BnSH are used as cosubstrates. Because the catalytic activity of each GPx mimic largely depends on the thiol cosubstrates used, the difference in the thiols causes the discrepancies observed in different studies. In this Account, we demonstrate the effect of amide and amine substituents on the GPx activity of various organoselenium compounds. The existence of strong Se ... O/N interactions in the selenenyl sulfide intermediates significantly reduces the GPx activity. These interactions facilitate an attack of thiol at selenium rather than at sulfur, leading to thiol exchange reactions that hamper the formation of catalytically active selenol. Therefore, any substituent capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds. Interestingly, replacement of the sec-amide substituent by a tert-amide group leads to a weakening of Se ... 0 interactions in the selenenyl sulfide intermediates. This modification results in 10- to 20-fold enhancements in the catalytic activities. Another strategy involving the replacement of tert-amide moieties by tert-amino substituents further increases the activity by 3- to 4-fold. The most effective modification so far in benzylamine-based GPx mimics appears to be either the replacement of a tert-amino substituent by a sec-amino group or the introduction of an additional 6-methoxy group in the phenyl ring. These strategies can contribute to a remarkable enhancement in the GPx activity. In addition to enhancing catalytic activity, a change in the substituents near the selenium moiety alters the catalytic mechanisms. The mechanistic investigations of functional mimics are useful not only for understanding the complex chemistry at the active site of GPx but also for designing and synthesizing novel antioxidants and anti-inflammatory agents.
Resumo:
In situ polymerization of 3,4-ethylenedioxythiophene with sol-gel-derived mesoporous carbon (MC) leading to a new composite and its subsequent impregnation with Pt nanoparticles for application in polymer electrolyte fuel cells (PEFCs) is reported. The composite exhibits good dispersion and utilization of platinum nanoparticles akin to other commonly used microporous carbon materials, such as carbon black. Pt-supported MC-poly(3,4-ethylenedioxythiophene) (PEDOT) composite also exhibits promising electrocatalytic activity toward oxygen reduction reaction, which is central to PEFCs. The PEFC with Pt-loaded MC-PEDOT support exhibits 75% of enhancement in its power density in relation to the PEFC with Pt-loaded pristine MC support while operating under identical conditions. It is conjectured that Pt-supported MC-PEDOT composite ameliorates PEFC performance/durability on repetitive potential cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3486172] All rights reserved.
Resumo:
A conformationally locked fluoropentol undergoes an interesting transformation to (trans,anti,trans,anti,trans)-perhydro-2,3,4a,6,7,8a-naphthalenehexol essentially under conditions of base-induced transesterification. The proposed rationale for the observed metamorphosis involves a nucleophilic displacement of fluoride, and subsequent stereo- and regioselective anti-Furst-Plattner-type ring-opening of the epoxide thus formed.
Resumo:
The reaction of imidazole (Him) with [Cu2(µ-O2CMe)4(H2O)2] in water–NaClO4 led to the formation of a polynuclear copper(II) complex, [Cu5(OH)2(H2O)(O2CMe)6(Him)4][ClO4]21, in which the pentanuclear units, showing four, five and six co-ordination geometries for the copper(II) centres and Cu Cu distances of 3.043(1), 3.178(1) and 3.578(1)Å, were linked by aqua bridges to give an intra-chain inter-unit Cu Cu separation of 4.507(1)Å.
Resumo:
Isoflavonoids are naturally occurring plant derived biochemicals, which act as phytoalexins. Isoflavonoids are of interest due to their estrogenic and other potential physiological properties, particularly in mammals that typically consume isoflavonoid rich nutrients such as soy and red clover. The literature review of this thesis mainly focuses on the reduced metabolites of hydroxy and/or methoxy substituted isoflavones with four groups: isoflavan-4-ols, isoflav-3-enes, isoflavans and α-methyldeoxybenzoins (1,2-diarylpropan-1-ones), which are all reduced metabolites of food derived isoflavones in mammals. Related isoflavan-4-ones are briefly discussed. Results of an extensive survey of the literature concerning the synthesis of polyhydroxy- or methoxysubstituted isoflavonoids and especially asymmetric approaches are discussed. The experimental section describes new synthetic methods to prepare polyphenolic reduced isoflavonoid structures such as isoflav-3-enes, isoflavan-4-ones, cis- and trans-isoflavan-4-ols, 1,2-diarylpropan-1-ones and isoflavans by various hydride reagents and hydrogenations. The specific reactivity differences of various hydride reagents toward isoflavonoids are discussed. The first enantioselective synthesis of natural (S)-(-)-equol and the opposite enantiomer (R)-(+)-equol is also described by the asymmetric iridium PHOX catalysed hydrogenation of isoflav-3-enes. Both of these equol enantiomers are found to possess biological activity in mammals due to estrogen receptor binding activity. The natural enantiomer prefers estrogen receptor β and the R-enantiomer prefers the estrogen receptor α. Also the precursor, isoflav-3-ene, is found to possess positive biological effects on mammals. In connection with the synthetic work, the (S)-(-)-equol was discovered from serum of ewes after isoflavone rich red clover feeding. The chiral HPLC method was developed to identify natural equol enantiomer for the first time in this species. The first synthesis of natural isoflavonoid (R)-(-)-angolensin and its enantiomer (S)-(+)-angolensin is desribed by the use of recyclable chiral auxiliaries (chiral pseudoephedrines). The method offers a general approach also to other natural polyphenolic 1,2-diarylpropan-1-ones and to further study isoflavonoid metabolism in human and other mammals. The absolute configurations of these new chiral isoflavonoid metabolites were determined by X-ray spectroscopy. Also thorough NMR and MS analysis of synthesised structures are presented.
Resumo:
Five new complexes of lanthanide perchlorates with a new ligand O,O' diisopropyl N(-4-antipyryl) phosphoramidate (DIAP) of the general formula Ln(DIAP)4(ClO4)3 where Ln = La, Pr, Nd, Sm and Gd, have been synthesised and characterized by chemical analysis, IR(200–4000cm−1) and electronic spectra and electrical conductance data. Infrared spectral data indicate the coordination of the ligand to the metal ions in a bidentate fashion, through the C=O oxygen of the antipyrine group and the P=O group. IR and conductance values show that the three perchlorate groups are ionic. Electronic spectrum of the Nd3+ complex in the visible region, indicates reasonable covalency in the metal-ligand bond. The available data point to an eight coordinate geometry around the metal ions, with each ligand behaving in a bidentate ‘00’ fashion.
Resumo:
4-Nitro 2-picoline-l-oxide (NPicO) complexes of the formulae La (NPicO)5 (CIO4)3, Ln2 (NPicO)9 (C1O4)6 (Ln = Pr, Nd, and Gd) and Ln (NPicO)4 (CIO4)3 (Ln == Tb, Dy, Ho and Yb) have been synthesised and characterised by analysis, electrolytic conductance, infrared, proton NMR and electronic spectral data. A tentative coordination number of 6 for all the complexes have been assigned
Resumo:
Separated Local Field (SLF) spectroscopy is a powerful tool for the determination of structure and dynamics of oriented systems such as membrane proteins oriented in lipid bilayers and liquid crystals. Of many SLF techniques available, Polarization Inversion Spin Exchange at Magic Angle (PISEMA) has found wide application due to its many favorable characteristics. However the pulse sequence suffers from its sensitivity to proton resonance frequency offset. Recently we have proposed a new sequence named 2(4)-SEMA (J. Chem. Phys. 132 (2010) 134301) that overcomes this problem of PISEMA. The present work demonstrates the advantage of 2(4)-SEMA as a highly sensitive SLF technique even for very large proton offset. 2(4)-SEMA has been designed for obtaining reliable dipolar couplings by switching the magic-angle spin-lock for protons over four quadrants as against the use of only two quadrants in PISEMA. It is observed that for on-resonance condition, 2(4)-SEMA gives rise to signal intensity comparable to or slightly higher than that from PISEMA. But under off-resonance conditions, intensities from 2(4)-SEMA are several fold higher than those from PISEMA. Comparison with another offset compensated pulse sequence, SAMPI4, also indicates a better intensity profile for 2(4)-SEMA. Experiments carried out on a single crystal of N-15 labeled N-acetyl-DL-valine and simulations have been used to study the relative performance of the pulse sequences considered. (C) 2010 Elsevier Inc. All rights reserved.