997 resultados para 279900 Other Biological Sciences
Resumo:
© 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Acknowledgments The authors thank H. H. Nguyen for his early development work on the BeeWatch interface; E. O'Mahony, I. Pearce, and R. Comont for identifying numerous photographed bumblebees; B. Darvill, D. Ewing, and G. Perkins for enabling our partnership with the Bumblebee Conservation Trust; and S. Blake for his investments in developing the NLG feedback. The study was part of the Digital Conservation project of dot.rural, the University of Aberdeen's Digital Economy Research Hub, funded by RCUK (grant reference EP/G066051/1).
Resumo:
Mice deficient for plasminogen exhibit a variety of pathologies, all of which examined to date are reversed when the animals are also made fibrin(ogen) deficient. These results suggested that the predominant, and perhaps exclusive, physiological role of plasminogen is clearance of fibrin. Plasminogen-deficient mice also display resistance to excitotoxin-induced neurodegeneration, in contrast with wild-type mice, which are sensitive. Based on the genetic interaction between plasminogen and fibrinogen, we investigated whether resistance to neuronal cell death in the plasminogen-deficient mice is dependent on fibrin(ogen). Unexpectedly, mice lacking both plasminogen and fibrinogen are resistant to neurodegeneration to levels comparable to plasminogen-deficient mice. Therefore, plasmin acts on substrates other than fibrin during experimental neuronal degeneration, and may function similarly in other pathological settings in the central nervous system.
Resumo:
We thank Karim Gharbi and Urmi Trivedi for their assistance with RNA sequencing, carried out in the GenePool genomics facility (University of Edinburgh). We also thank Susan Fairley and Eduardo De Paiva Alves (Centre for Genome Enabled Biology and Medicine, University of Aberdeen) for help with the initial bioinformatics analysis. We thank Aaron Mitchell for kindly providing the ALS3 mutant, Julian Naglik for the gift of TR146 cells, and Jon Richardson for technical assistance. We thank the Genomics and Bioinformatics core of the Faculty of Health Sciences for Next Generation Sequencing and Bioinformatics support, the Information and Communication Technology Office at the University of Macau for providing access to a High Performance Computer and Jacky Chan and William Pang for their expert support on the High Performance Computer. Finally, we thank Amanda Veri for generating CaLC2928. M.D.L. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072), R.A.F. by a Wellcome Trust-Massachusetts Institute of Technology (MIT) Postdoctoral Fellowship, L.E.C. by a Canada Research Chair in Microbial Genomics and Infectious Disease and by Canadian Institutes of Health Research Grants MOP-119520 and MOP-86452, A.J. P.B. was supported by the UK Biotechnology and Biological Sciences Research Council (BB/F00513X/1) and by the European Research Council (ERC-2009-AdG-249793-STRIFE), KHW is supported by the Science and Technology Development Fund of Macau S.A.R (FDCT) (085/2014/A2) and the Research and Development Administrative Office of the University of Macau (SRG2014-00003-FHS) and R.T.W. by the Burroughs Wellcome fund and NIH R15AO094406. Data availability RNA-sequencing data sets are available at ArrayExpress (www.ebi.ac.uk) under accession code E-MTAB-4075. ChIP-seq data sets are available at the NCBI SRA database (http://www.ncbi.nlm.nih.gov) under accession code SRP071687. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files, or from the corresponding author upon request.
Resumo:
Down-regulation of the initial burst of viremia during primary HIV infection is thought to be mediated predominantly by HIV-specific cytotoxic T lymphocytes, and the appearance of this response is associated with major perturbations of the T cell receptor repertoire. Changes in the T cell receptor repertoire of virus-specific cytotoxic T lymphocytes were analyzed in patients with primary infection to understand the failure of the cellular immune response to control viral spread and replication. This analysis demonstrated that a significant number of HIV-specific T cell clones involved in the primary immune response rapidly disappeared. The disappearance was not the result of mutations in the virus epitopes recognized by these clones. Evidence is provided that phenomena such as high-dose tolerance or clonal exhaustion might be involved in the disappearance of these monoclonally expanded HIV-specific cytotoxic T cell clones. These findings should provide insights into how HIV, and possibly other viruses, elude the host immune response during primary infection.
Resumo:
One-third of humans are infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. Sequence analysis of two megabases in 26 structural genes or loci in strains recovered globally discovered a striking reduction of silent nucleotide substitutions compared with other human bacterial pathogens. The lack of neutral mutations in structural genes indicates that M. tuberculosis is evolutionarily young and has recently spread globally. Species diversity is largely caused by rapidly evolving insertion sequences, which means that mobile element movement is a fundamental process generating genomic variation in this pathogen. Three genetic groups of M. tuberculosis were identified based on two polymorphisms that occur at high frequency in the genes encoding catalase-peroxidase and the A subunit of gyrase. Group 1 organisms are evolutionarily old and allied with M. bovis, the cause of bovine tuberculosis. A subset of several distinct insertion sequence IS6110 subtypes of this genetic group have IS6110 integrated at the identical chromosomal insertion site, located between dnaA and dnaN in the region containing the origin of replication. Remarkably, study of ≈6,000 isolates from patients in Houston and the New York City area discovered that 47 of 48 relatively large case clusters were caused by genotypic group 1 and 2 but not group 3 organisms. The observation that the newly emergent group 3 organisms are associated with sporadic rather than clustered cases suggests that the pathogen is evolving toward a state of reduced transmissability or virulence.
Resumo:
Peer reviewed
Resumo:
The complex prokaryote, Myxococcus xanthus, undergoes a program of multicellular development when starved for nutrients, culminating in sporulation. M. xanthus makes MglA, a 22-kDa, soluble protein that is required for both multicellular development and gliding motility. MglA is similar in sequence to the Saccharomyces cerevisiae SAR1 protein, a member of the Ras/Rab/Rho superfamily of small eukaryotic GTPases. The SAR1 gene, when integrated into the M. xanthus genome, complements the sporulation defect of a ΔmglA strain. A forward, second-site mutation on the M. xanthus chromosome, rpm, in combination with SAR1, restores fruiting body morphogenesis and gliding motility to a ΔmglA strain. The result that the rpm mutation suppresses the substitution of SAR1 for mglA suggests that Sar1p interacts with other M. xanthus proteins to control the motility-dependent aggregation of cells during development.
Resumo:
A visual pigment-like protein, referred to as peropsin, has been identified by large-scale sequencing of cDNAs derived from human ocular tissues. The corresponding mRNA was found only in the eye, where it is localized to the retinal pigment epithelium (RPE). Peropsin immunoreactivity, visualized by light and electron microscopy, localizes the protein to the apical face of the RPE, and most prominently to the microvilli that surround the photoreceptor outer segments. These observations suggest that peropsin may play a role in RPE physiology either by detecting light directly or by monitoring the concentration of retinoids or other photoreceptor-derived compounds.
Resumo:
5-HT-moduline is an endogenous tetrapeptide [Leu-Ser-Ala-Leu (LSAL)] that was first isolated from bovine brain tissue. To understand the physiological role of this tetrapeptide, we studied the localization of 5-HT-moduline binding sites in rat and mouse brains. Quantitative data obtained with a gaseous detector of β-particles (β-imager) indicated that [3H]-5-HT-moduline bound specifically to rat brain sections with high affinity (Kd = 0.77 nM and Bmax = 0.26 dpm/mm2). Using film autoradiography in parallel, we found that 5-HT-moduline binding sites were expressed in a variety of rat and mouse brain structures. In 5-HT1B receptor knock-out mice, the specific binding of [3H]-5-HT-moduline was not different from background labeling, indicating that 5-HT-moduline targets are exclusively located on the 5-HT1B receptors. Although the distribution of 5-HT-moduline binding sites was similar to that of 5-HT1B receptors, they did not overlap totally. Differences in distribution patterns were found in regions containing either high levels of 5-HT1B receptors such as globus pallidus and subiculum that were poorly labeled or in other regions such as dentate gyrus of hippocampus and cortex where the relative density of 5-HT-moduline binding sites was higher than that of 5-HT1B receptors. In conclusion, our data, based on autoradiographic localization, indicate that 5-HT-moduline targets are located on 5-HT1B receptors present both on 5-HT afferents and postsynaptic neurons. By interacting specifically with 5-HT1B receptors, this tetrapeptide may play a pivotal role in pathological states such as stress that involves the dysfunction of 5-HT neurotransmission.
Resumo:
The presenilin proteins PS-1 and PS-2 are crucially involved in Alzheimer disease (AD), but their molecular functions are not known. They are integral membrane proteins, but whether they can be expressed at the surface of cells has been in dispute. Here we show by immunofluorescence experiments, using anti-peptide antibodies specific for either PS-1 or PS-2, that live cultured DAMI cells and differentiated human NT2N neuronal cells are specifically immunolabeled for their endogenous as well as transfected presenilins, although the cells cannot be immunolabeled for their intracellular tubulin, unless they are first fixed and permeabilized. These and other results establish that portions of the presenilins are indeed expressed at the surfaces of these cells. These findings support our previous proposal that the presenilins on the surface of a cell engage in intercellular interactions with the β-amyloid precursor protein on the surface of a neighboring cell, as a critical step in the molecular and cellular mechanisms that lead to AD.
Resumo:
Norepinephrine contributes to antinociceptive, sedative, and sympatholytic responses in vivo, and α2 adrenergic receptor (α2AR) agonists are used clinically to mimic these effects. Lack of subtype-specific agonists has prevented elucidation of the role that each α2AR subtype (α2A, α2B, and α2C) plays in these central effects. Here we demonstrate that α2AR agonist-elicited sedative, anesthetic-sparing, and analgesic responses are lost in a mouse line expressing a subtly mutated α2AAR, D79N α2AAR, created by two-step homologous recombination. These functional changes are accompanied by failure of the D79N α2AAR to inhibit voltage-gated Ca2+ currents and spontaneous neuronal firing, a measure of K+ current activation. These results provide definitive evidence that the α2AAR subtype is the primary mediator of clinically important central actions of α2AR agonists and suggest that the D79N α2AAR mouse may serve as a model for exploring other possible α2AAR functions in vivo.
Resumo:
Peer reviewed
Resumo:
The lecticans are a family of chondroitin sulfate proteoglycans including aggrecan, versican, neurocan, and brevican. The C-terminal globular domains of lecticans are structurally related to selectins, consisting of a C-type lectin domain flanked by epidermal growth factor and complement regulatory protein domains. The C-type lectin domain of versican has been shown to bind tenascin-R, an extracellular matrix protein specifically expressed in the nervous system, and the interaction was presumed to be mediated by a carbohydrate–protein interaction. In this paper, we show that the C-type lectin domain of brevican, another lectican that is specifically expressed in the nervous system, also binds tenascin-R. Surprisingly, this interaction is mediated by a protein–protein interaction through the fibronectin type III domains 3–5 of tenascin-R, independent of any carbohydrates or sulfated amino acids. The lectin domains of versican and other lecticans also bind the same domain of tenascin-R by protein–protein interactions. Surface plasmon resonance analysis revealed that brevican lectin has at least a 10-fold higher affinity than the other lectican lectins. Tenascin-R is coprecipitated with brevican from adult rat brain extracts, suggesting that tenascin-R and brevican form complexes in vivo. These results demonstrate that the C-type lectin domain can interact with fibronectin type III domains through protein–protein interactions, and suggest that brevican is a physiological tenascin-R ligand in the adult brain.
Resumo:
Oligonucleotides that recapitulate the acceptor stems of tRNAs are substrates for aminoacylation by many tRNA synthetases in vitro, even though these substrates are missing the anticodon trinucleotides of the genetic code. In the case of tRNAAla a single acceptor stem G⋅U base pair at position 3·70 is essential, based on experiments where the wobble pair has been replaced by alternatives such as I⋅U, G⋅C, and A⋅U, among others. These experiments led to the conclusion that the minor-groove free 2-amino group (of guanosine) of the G⋅U wobble pair is essential for charging. Moreover, alanine-inserting tRNAs (amber suppressors) that replace G⋅U with mismatches such as G⋅A and C⋅A are partially active in vivo and can support growth of an Escherichia coli tRNAAla knockout strain, leading to the hypothesis that a helix irregularity and nucleotide functionalities are important for recognition. Herein we investigate the charging in vitro of oligonucleotide and full-length tRNA substrates that contain mismatches at the position of the G⋅U pair. Although most of these substrates have undetectable activity, G⋅A and C⋅A variants retain some activity, which is, nevertheless, reduced by at least 100-fold. Thus, the in vivo assays are much less sensitive to large changes in aminoacylation kinetic efficiency of 3·70 variants than is the in vitro assay system. Although these functional data do not clarify all of the details, it is now clear that specific atomic groups are substantially more important in determining kinetic efficiency than is a helical distortion. By implication, the activity of mutant tRNAs measured in the in vivo assays appears to be more dependent on factors other than aminoacylation kinetic efficiency.
Resumo:
LINEs are transposable elements, widely distributed among eukaryotes, that move via reverse transcription of an RNA intermediate. Mammalian LINEs have two ORFs (ORF1 and ORF2). The proteins encoded by these ORFs play important roles in the retrotransposition process. Although the predicted amino acid sequence of ORF1 is not closely related to any known proteins, it is highly basic; thus, it has long been hypothesized that ORF1 protein functions to bind LINE-1 (L1) RNA during retrotransposition. Cofractionation of ORF1 protein and L1 RNA in extracts from both mouse and human embryonal carcinoma cells indicated that ORF1 protein binds L1 RNA, forming a ribonucleoprotein particle. Based on UV crosslinking and electrophoretic mobility-shift assays using purified components, we demonstrate here that the ORF1 protein encoded by mouse L1 binds nucleic acids with a strong preference for RNA and other single-stranded nucleic acids. Furthermore, multiple copies of ORF1 protein appear to bind single-stranded nucleic acid in a manner suggesting positive cooperativity; such binding characteristics are likely to be facilitated by the protein–protein interactions detected among molecules of ORF1 polypeptide by coimmunoprecipitation. These observations are consistent with the formation of ribonucleoprotein particles containing L1 RNA and ORF1 protein and provide additional evidence for the role of ORF1 protein during retrotransposition of L1.