989 resultados para 174-1074


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-alpha, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKC delta-MAPK pathway to suppress beta-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of Mycobacterium tuberculosis to resist intraphagosomal stresses, such as oxygen radicals and low pH, is critical for its persistence. Here, we show that a cytoplasmic redox sensor, WhiB3, and the major M. tuberculosis thiol, mycothiol (MSH), are required to resist acidic stress during infection. WhiB3 regulates the expression of genes involved in lipid anabolism, secretion, and redox metabolism, in response to acidic pH. Furthermore, inactivation of the MSH pathway subverted the expression of whiB3 along with other pH-specific genes in M. tuberculosis. Using a genetic biosensor of mycothiol redox potential (E-MSH), we demonstrated that a modest decrease in phagosomal pH is sufficient to generate redox heterogeneity in E-MSH of the M. tuberculosis population in a WhiB3-dependent manner. Data indicate that M. tuberculosis needs low pH as a signal to alter cytoplasmic E-MSH, which activates WhiB3-mediated gene expression and acid resistance. Importantly, WhiB3 regulates intraphagosomal pH by down-regulating the expression of innate immune genes and blocking phagosomal maturation. We show that this block in phagosomal maturation is in part due to WhiB3-dependent production of polyketide lipids. Consistent with these observations, Mtb Delta whiB3 displayed intramacrophage survival defect, which can be rescued by pharmacological inhibition of phagosomal acidification. Last, Mtb Delta whiB3 displayed marked attenuation in the lungs of guinea pigs. Altogether, our study revealed an intimate link between vacuolar acidification, redox physiology, and virulence in M. tuberculosis and discovered WhiB3 as crucial mediator of phagosomal maturation arrest and acid resistance in M. tuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methanol expression regulator 1 (Mxr1p) is a zinc finger protein that regulates the expression of genes encoding enzymes of the methanol utilization pathway in the methylotrophic yeast Pichia pastoris by binding to Mxr1p response elements (MXREs) present in their promoters. Here we demonstrate that Mxr1p is a key regulator of acetate metabolism as well. Mxr1p is cytosolic in cells cultured in minimal medium containing a yeast nitrogen base, ammonium sulfate, and acetate (YNBA) but localizes to the nucleus of cells cultured in YNBA supplemented with glutamate or casamino acids as well as nutrient-rich medium containing yeast extract, peptone, and acetate (YPA). Deletion of Mxr1 retards the growth of P. pastoris cultured in YNBA supplemented with casamino acids as well as YPA. Mxr1p is a key regulator of ACS1 encoding acetyl-CoA synthetase in cells cultured in YPA. A truncated Mxr1p comprising 400 N-terminal amino acids activates ACS1 expression and enhances growth, indicating a crucial role for the N-terminal activation domain during acetate metabolism. The serine 215 residue, which is known to regulate the expression of Mxr1p-activated genes in a carbon source-dependent manner, has no role in the Mxr1p-mediated activation of ACS1 expression. The ACS1 promoter contains an Mxr1p response unit (MxRU) comprising two MXREs separated by a 30-bp spacer. Mutations that abrogate MxRU function in vivo abolish Mxr1p binding to MxRU in vitro. Mxr1p-dependent activation of ACS1 expression is most efficient in cells cultured in YPA. The fact that MXREs are conserved in genes outside of the methanol utilization pathway suggests that Mxr1p may be a key regulator of multiple metabolic pathways in P. pastoris.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Glyphochloa (Poaceae: Panicoideae: Andropogoneae: Rottboellinae) is endemic to peninsular India and is distributed on lateritic plateaus of low and high altitude in and around Western Ghats and the Malabar Coast. The genus presumably originated and diversified in the Western Ghats. Species relationships in the genus Glyphochloa were deduced here based on molecular phylogenies inferred using nuclear ribosomal ITS sequences and plastid intergenic spacer regions (atpB-rbcL, trnT-trnL, trnL-trnF), and new observations were made of spikelet morphology, caryopsis morphology and meiotic chromosome counts. We observed two distinct clades of Glyphochloa s.l. One of these (group I') includes Ophiuros bombaiensis, and is characterized by a single-awned lower glume and a base chromosome number of 6; it grows in low elevation coastal areas. The other clade (group II') has a double-awned lower glume, a base chromosome number of 7, and is restricted to higher elevation lateritic plateaus; G. ratnagirica may belong to the group II clade, or may be a third distinct lineage in the genus. A sister-group relationship between group I and II taxa (with or without G. ratnagirica) is not well supported, although the genus is recovered as monophyletic in shortest trees inferred using ITS or concatenated plastid data. We present a key to species of Glyphochloa and make a new combination for O. bombaiensis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafine diamond (UFD) was synthesized under high pressure and high temperatures generated by explosive detonation. The structure, composition, surface and thermal stability of UFD were studied by use of XRD, TEM, Raman Spectroscopy, FTIR, etc. The influences of the synthesis conditions and purification conditions on the properties of UFD were analyzed. The UFD had an average size of 4-6 nm, commonly exhibiting a spherical shape. The highest yield was of up to 10 mass% of the explosive. Attempts were made to use UFD as an additive to metal-diamond sintering and as crystallite seeds of CVD diamond films. The results show that UFD can decrease the coefficient of friction of the composite by 30%, and raise the nucleation density in CVD diamond films by 2-3 times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se realizó un experimento con 30 cerdos comerciales en las etapas de desarrollo y engorde, con una duración de 120 días (60 días por etapa) con el objetivo de evaluar el efecto de la inclusión de yuca y suero en la alimentación. Sobre consumo, ganancia medía diaria (GMD), conversión alimenticia y utilidad económica. Los cerdos fueron asignados aleatoriamente en 3 grupos de 10 cerdos cada uno, de pesos similares con 60 días de edad, utilizándose un Diseño Completo al Azar (D.C.A. ). Se encontró diferencias significativas (P<0.05) en las categorías de desarrollo y engorde en cuanto a ganancia medía diaria del tratamiento T 1 respecto a los tratamientos T2 y T3. Las raciones experimentales estaban constituidas por: T1 (testigo) concentrado comercial, T2 base (50% maíz., 50% semolina y sal) y suero y el T3 la misma base, suero y yuca. En la etapa de desarrollo los consumos de alimento, ganancia media diaria y conversión alimenticia promedio por cerdo fueron de: 63.48, 189.57 y 218.45 kg; 384.33, 174.33 y 158.33 gramos/día; 2.75, 19.95 y 20.88 para T1, T2 y T3 respectivamente. En la etapa de engorde, los consumos de alimento, ganancia media diaria y conversión alimenticia promedia por cerdo fueron de: 164.98, 343.44 y 355.87 kg; 822.03, 398.65 y 328.80 gramos/día; 3.34, 14.36 y 18.03. El análisis económico evidencia que las mejores utilidades se obtuvieron con el T2 en la etapa de engorde con C$90.61/cerdo. Se concluye que se puede suministrar raciones para la alimentación de cerdos en engorde con subproductos lácteos y agrícolas con el fin de disminuir los costos por alimento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we demonstrate strong flexoelectric coupling in bimesogenic liquid crystals. This strong coupling is determined via the flexoelectro-optic effect in chiral nematic liquid crystals based on bimesogenic mixtures that are doped with low concentrations of high twisting power chiral additive. Two mixtures were examined: one had a pitch length of p∼300nm, the other had a pitch length of p∼600nm. These mixtures exhibit enantiotropic chiral nematic phases close to room temperature. We found that full-intensity modulation, that is, a rotation of the optic axis of 45° between crossed polarizers, could be achieved at significantly lower applied electric fields (E<5Vμm -1) than previously reported. In fact, for the condition of full-intensity modulation, the lowest electric-field strength recorded was E=2Vμm-1. As a result of a combination of the strong flexoelectric coupling and a divergence in the pitch, tilt angles of the optic axis up to 87°, i.e., a rotation of the optic axis through 174°, were observed. Furthermore, the flexoelastic ratios, which may be considered as a figure-of-merit parameter, were calculated from the results and found to be large, ranging from 1.3to2C/Nm for a temperature range of up to 40°C. © 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon thin films are very important as protective coatings for a wide range of applications such as magnetic storage devices. The key parameter of interest is the sp3 fraction, since it controls the mechanical properties of the film. Visible Raman spectroscopy is a very popular technique to determine the carbon bonding. However, the visible Raman spectra mainly depend on the configuration and clustering of the sp2 sites. This can result in the Raman spectra of different samples looking similar albeit having a different structure. Thus, visible Raman alone cannot be used to derive the sp3 content. Here we monitor the carbon bonding by using a combined study of Raman spectra taken at two wavelengths (514 and 244 nm). We show how the G peak dispersion is a very useful parameter to investigate the carbon samples and we endorse it as a production-line characterisation tool. The dispersion is proportional to the degree of disorder, thus making it possible to distinguish between graphitic and diamond-like carbon. © 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural changes induced by the incorporation of nitrogen into ta-C : H films have been studied by Electron Energy Loss Spectroscopy, X-Ray Photoelectron Spectroscopy, Fourier Transformed Infrared Spectroscopy and Ultraviolet-Visible Spectroscopy. ta-C:H films have been synthesised using a low pressure Electron Cyclotron Wave Resonance (ECWR) source which provides a plasma beam with a high degree of ionisation and dissociation. Nitrogen was incorporated by adding N2 to the C2H2 plasma used for the deposition of ta-C : H films. The N/C atomic ratio in the films rises rapidly until the N2/C2H2 gas ratio reaches three, and then increases more gradually, while the deposition rate decreases steeply. Chemical sputtering of the forming films and the formation of molecular nitrogen within the films limit the maximum nitrogen content to about N/C = 0.6. For low nitrogen content the films retain their diamond-like properties, however as N/C atomic ratio increases, a polymeric-like material is formed, with >C=N- structures and terminating C=N and NH groups that decrease the connectivity of the network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con el objeto de evaluar el comportamiento adaptativo y productivo de cuatro cultivares de Brachiaria brizantha (Humidicola, Decumbens, Toledo y Marandú) y dos cultivares de Panicum maximum (Mombasa y Tanzania), se realizó un estudio en la Hacienda Guapinolapa, Ganadería Internacional S.A. Ubicada en Puerto Díaz, Juigalpa, Chontales. Se evaluaron variables fisiológicas, morfoestructurales y de composición química, en dichos cultivares siendo estas: germinación, altura, cobertura, densidad poblacional, resistencia a plagas y enfermedades, producción de biomasa y contenido de proteínas. El estudio se llevó a cabo en la época lluvios a del 2007 (de agosto a diciembre) y al inicio de la época seca del 2008 en el mes de enero, durante el experimento se aplicó manejo agronómico (fertilización, manejo de malezas, etc.). Se utilizó un diseño experimental de bloques completos al azar (BCA) con tres repeticiones. El mejor porcentaje de germinación lo obtuvieron los cultivares de Panicum maximum Tanzania y Mombasa con cien por ciento en el campo. La mayor altura registrada para los de Panicum maximum fue en el cultivar Tanzania con 174.00 cm y en los Brachiaria brizantha el cultivar Toledo con 138.83cm. La mejor densidad poblacional la obtuvo Panicum maximum cv Tanzania con 54 plantas por metro lineal, además este cultivar y el Mombasa alcanzaron la mejor cobertura a los 28 días después de germinado. Estos cultivares evaluados presentaron resistencia a plagas y enfermedades. Brachiaria brizantha cv Decumbens fue la mejor en producción de biomasa fresca con 15,172 kg/ha, en biomasa seca fue Panicum maximum cv Mombasa, quien logro los mejores resultados con 9,819 kg/ha y porcentaje de materia seca de 77%. El mejor contenido proteico lo obtuvo Brachiaria brizantha cv Decumbens con 8.9% de proteínas, los demás cultivares se mantuvieron por arriba del nivel de 7%.