989 resultados para 157-956
Resumo:
It is shown that thermally stimulated photocurrent measurements provide a simple and effective method of determining the activation energy of thermal regeneration rate of EL2 from the metastable state to the normal state in undoped semi‐insulating GaAs. The thermal regeneration rate r is found to be 2.5×108 exp(−0.26 eV/kT) s−1.
Resumo:
Stabilized forms of heteropolyacids (HPAs), namely phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA), are incorporated into poly (vinyl alcohol) (PVA) cross-linked with sulfosuccinic acid (SSA) to form mixed-matrix membranes for application in direct methanol fuel cells (DMFCs). Bridging SSA between PVA molecules not only strengthens the network but also facilitates proton conduction in HPAs. The mixed-matrix membranes are characterized for their mechanical stability, sorption capability, ion-exchange capacity, and wetting in conjunction with their proton conductivity, methanol permeability, and DMFC performance. Methanol-release kinetics is studied ex situ by volume-localized NMR spectroscopy (employing point-resolved spectroscopy'') with the results clearly demonstrating that the incorporation of certain inorganic fillers in PVA-SSA viz., STA and PTA, retards the methanol-release kinetics under osmotic drag compared to Nafion, although PVA-SSA itself exhibits a still lower methanol permeability. The methanol crossover rate for PVA-SSA-HPA-bridged-mixed-matrix membranes decreases dramatically with increasing current density rendering higher DMFC performance in relation to a DMFC using a pristine PVA-SSA membrane. A peak power density of 150 mW/cm(2) at a load current density of 500 mA/cm(2) is achieved for the DMFC using a PVA-SSA-STA-bridged-mixed-matrix-membrane electrolyte. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3465653] All rights reserved.
Resumo:
Some theorems derived recently by the authors on the stability of multidimensional linear time varying systems are reported in this paper. To begin with, criteria based on Liapunov�s direct method are stated. These are followed by conditions on the asymptotic behaviour and boundedness of solutions. Finally,L 2 andL ? stabilities of these systems are discussed. In conclusion, mention is made of some of the problems in aerospace engineering to which these theorems have been applied.
Resumo:
The Gibbs' energy change for the reaction, 3CoO (r.s.)+1/2O2(g)→Co3O4(sp), has been measured between 730 and 1250 K using a solid state galvanic cell: Pt, CuO+Cu2O|(CaO)ZrO2|CoO+Co3O4,Pt. The emf of this cell varies nonlinearly with temperature between 1075 and 1150 K, indicating a second or higher order phase transition in Co3O4around 1120 (±20) K, associated with an entropy change of ∼43 Jmol-1K-1. The phase transition is accompanied by an anomalous increase in lattice parameter and electrical conductivity. The cubic spinel structure is retained during the transition, which is caused by the change in CO+3 ions from low spin to high spin state. The octahedral site preference energy of CO+3 ion in the high spin state has been evaluated as -24.8 kJ mol-1. This is more positive than the value for CO+2 ion (-32.9 kJ mol-1). The cation distribution therefore changes from normal to inverse side during the phase transition. The transformation is unique, coupling spin unpairing in CO+3 ion with cation rearrangement on the spinel lattice, DTA in pure oxygen revealed a small peak corresponding to the transition, which could be differentiated from the large peak due to decomposition. TGA showed that the stoichiometry of oxide is not significantly altered during the transition. The Gibbs' energy of formation of Co3O4 from CoO and O2 below and above phase transition can be represented by the equations:ΔG0=-205,685+170.79T(±200) J mol-1(730-1080 K) and ΔG0=-157,235+127.53T(±200) J mol-1(1150-1250 K).
Resumo:
Study orientations in higher education consist of various dimensions, such as approaches to learning, conceptions of learning and knowledge (i.e. epistemologies), self-regulation, and motivation. They have also been measured in different ways. The main orientations typically reported are reproducing and meaning orientations. The present study explored dimensions of study orientations, focusing in particular on pharmacy and medicine. New versions of self-report instruments were developed and tested in various contexts and in two countries. Furthermore, the linkages between study orientations and students epistemological development were explored. The context of problem-based (PBL) small groups was investigated in order to better understand how collaboration contributes to the quality of learning. The participants of Study I (n=66) were pharmacy students, who were followed during a three-year professionally oriented program in terms of their study orientations and epistemologies. A reproducing orientation to studying diminished during studying, whereas only a few students maintained their original level of meaning orientation. Dualism was found to be associated with a reproducing orientation. In Study II practices associated with deep and surface approaches to learning were measured in two differing ways, in order to better distinguish between what students believed to be useful in studying, and the extent to which they applied their beliefs to practice when preparing for examinations. Differences between domains were investigated by including a sample of Finnish and Swedish medical students (n=956) and a Finnish non-medical sample of university students (n=865). Memorizing and rote learning appeared as differing components of a surface approach to learning, while understanding, relating, and critical evaluation of knowledge emerged as aspects of a deep approach to learning. A structural model confirmed these results in both student samples. Study III explored a wide variety of dimensions of learning in medical education. Swedish medical students (n=280) answered the questionnaire. The deep approach to learning was strongly related to collaboration and reflective learning, whereas the surface approach was associated with novice-like views of knowledge and the valuing of certain and directly applicable knowledge. PBL students aimed at understanding, but also valued the role of memorization. Study IV investigated 12 PBL tutorial groups of students (n=116) studying microbiology and pharmacology in a medical school. The educational application was expected to support a deep approach to learning: Group members course grades in a final examination were related to the perceived functioning of the PBL tutorial groups. Further, the quality of cases that had been used as triggers for learning, was associated with the quality of small group functioning. New dimensions of study orientations were discovered. In particular, novel, finer distinctions were found within the deep approach component. In medicine, critical evaluation of knowledge appeared to be less valued than understanding and relating. Further, collaboration appeared to be closely related to the deep approach, and it was also important in terms of successful PBL studying. The results of the studies confirmed the previously found associations between approaches to learning and study success, but showed interesting context- and subgroup-related differences in this respect. Students ideas about the nature of knowledge and their approaches to learning were shown to be closely related. The present study expanded our understanding of the dimensions of study orientations, of their development, and their contextual variability in pharmacy and medicine.
Resumo:
Third-order nonlinear absorption and refraction coefficients of a few-layer boron carbon nitride (BCN) and reduced graphene oxide (RGO) suspensions have been measured at 3.2 eV in the femtosecond regime. Optical limiting behavior is exhibited by BCN as compared to saturable absorption in RGO. Nondegenerate time-resolved differential transmissions from BCN and RGO show different relaxation times. These differences in the optical nonlinearity and carrier dynamics are discussed in the light of semiconducting electronic band structure of BCN vis-a-vis the Dirac linear band structure of graphene. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
X-ray and ultraviolet photoelectron spectroscopy have been employed to investigate the high temperature metal-insulator transitions in V2O3 and (V0.99Cr0.01)2O3. The high temperature transitions are associated with more gradual changes in the 3d bands compared to the low-temperature transitions
Resumo:
In situ polymerization of 3,4-ethylenedioxythiophene with sol-gel-derived mesoporous carbon (MC) leading to a new composite and its subsequent impregnation with Pt nanoparticles for application in polymer electrolyte fuel cells (PEFCs) is reported. The composite exhibits good dispersion and utilization of platinum nanoparticles akin to other commonly used microporous carbon materials, such as carbon black. Pt-supported MC-poly(3,4-ethylenedioxythiophene) (PEDOT) composite also exhibits promising electrocatalytic activity toward oxygen reduction reaction, which is central to PEFCs. The PEFC with Pt-loaded MC-PEDOT support exhibits 75% of enhancement in its power density in relation to the PEFC with Pt-loaded pristine MC support while operating under identical conditions. It is conjectured that Pt-supported MC-PEDOT composite ameliorates PEFC performance/durability on repetitive potential cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3486172] All rights reserved.
Resumo:
The solid-state transformation behaviour of the icosahedral phase in rapidly solidified Al-20 at.% Mn has been investigated by in situ heating experiments in the transmission electron microscope. As-rapidly-solidified Al-20 at.% Mn consists mainly of a dendritic icosahedral phase, with a small amount of interdendritic f.c.c. agr-Al. During subsequent heat treatment at temperatures below about 500°C, the dendritic icosahedral phase grows and consumes the interdendritic agr-Al. At about 500°C the decagonal phase nucleates near icosahedral dendrite and grain boundaries and then grows into the icosahedral matrix by lateral motion of ledges 10-20 nm high across facet planes normal to the twofold symmetry axes. At about 600°C the decagonal phase transforms into a crystalline phase. The present study suggests that solid-state decomposition of the icosahedral phase is the mechanism of decagonal phase formation in as-rapidly-solidified Al-Mn alloys.
Resumo:
The presence of redox systems in microsomes of brown adipose tissue (BAT) in cold exposed rats was investigated and compared with liver. BAT microsomes showed high activity of lipid peroxidation measured both by the formation of malondialdehyde (MDA) and by oxygen uptake. NADH and NADPH dependent cytochrome c reductase activity were present in both BAT and liver microsomes. Aminopyrine demethylase and aniline hydroxylase activities, the characteristic detoxification enzymes in liver microsomes could not be detected in BAT microsomes. BAT minces showed very poor incorporation of [1-14C]acetate and [2-14C]-mevalonate in unsaponifiable lipid fraction compared to liver. Biosynthesis of cholesterol and ubiquinone, but not fatty acids, and the activity of 3-hydroxy-3-methyl glutaryl CoA reductase appear to be very low in BAT. Examination of difference spectra showed the presence of only cytochrome b 5 in BAT microsomes. In addition to the inability to detect the enzyme activities dependent on cytochrome P-450, a protein with the characteristic spectrum, molecular size in SDS-PAGE and interaction with antibodies in double diffusion test, also could not be detected in BAT microsomes. The high activity of lipid peroxidation in microsomes, being associated with large oxygen uptake and oxidation of NADPH, will also contribute to the energy dissipation as heat in BAT, considered important in thermogenesis.
Resumo:
Given a classical dynamical theory with second-class constraints, it is sometimes possible to construct another theory with first-class constraints, i.e., a gauge-invariant one, which is physically equivalent to the first theory. We identify some conditions under which this may be done, explaining the general principles and working out several examples. Field theoretic applications include the chiral Schwinger model and the non-linear sigma model. An interesting connection with the work of Faddeev and Shatashvili is pointed out.
Resumo:
Aluminium alloy (A356)-SiC composites containing 15 and 25 wt.% silicon carbide particles (average size 43 μm) were tested for sliding wear at different loads using a pin on disc machine. Composites exhibited better wear resistance compared with unreinforced alloy up to a pressure of 26 MPa. Scanning electron microscopy examination of worn surfaces and subsurfaces show that the presence of dispersed SiC particles help in reducing the propensity of material flow at the surface, at the same time leading to the formation of an iron-rich layer on the surface.
Resumo:
The hot deformation behavior of α brass with varying zinc contents in the range 3%–30% was characterized using hot compression testing in the temperature range 600–900 °C and strain rate range 0.001–100 s−1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by Image where m is the strain rate sensitivity) with temperature and strain rate were obtained. α brass exhibits a domain of dynamic recrystallization (DRX) at temperatures greater than 0.85Tm and at strain rates lower than 1 s−1. The maximum efficiency of power dissipation increases with increasing zinc content and is in the range 33%–53%. The DRX domain shifts to lower strain rates for higher zinc contents and the strain rate for peak efficiency is in the range 0.0001–0.05 s−1. The results indicate that the DRX in α brass is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb.