982 resultados para 117-722


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trägerbände: Ms. Barth. 52; Ms. Barth. 66; Vorbesitzer: St. Peter Urach; Bartholomaeusstift Frankfurt am Main

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trägerband: 'Nicolaus de Lyra, Praeceptorium'

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical composition of surface associated metabolites of two Fucus species (Fucus vesiculosus and Fucus serratus) was analysed by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Method: The two perennial brown macroalgae F. vesiculosus and F. serratus were sampled monthly at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) over an entire year (August 2012 - July 2013). Per month and species six non-fertile Fucus individuals were collected from mixed stands at a depth of 0.5 m under mid water level. For surface extraction approx. 50 g of the upper 5-10 cm apical thalli tips were cut off per species. The surface extraction of Fucus was performed according to the protocol of de Nys and co-workers (1998) with minor modifications (see Rickert et al. 2015). GC/EI-MS measurements were performed with a Waters GCT premier (Waters, Manchester, UK) coupled to an Agilent 6890N GC equipped with a DB-5 ms 30 m column (0.25 mm internal diameter, 0.25 mM film thickness, Agilent, USA). The inlet temperature was maintained at 250°C and samples were injected in split 10 mode. He carrier gas flow was adjusted to 1 ml min-1. Alkanes were used for referencing of retention times. For further details (GC-MS sample preparation and analysis) see the related publication (Rickert et al. submitted to PLOS ONE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen isotopic studies both of benthic formanifera (Emiliani, 1954, doi:10.1126/science.119.3103.853; Savin et al., 1975, doi:10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2; Shackleton and Kennett, 1975, doi:10.2973/dsdp.proc.29.117.1975; Savin, 1977, doi:10.1146/annurev.ea.05.050177.001535) and shallow-marine carbonates ( Dorman, 1966; Devereux, 1967; Buchart, 1978, doi:10.1038/275121a0) have provided a useful monitor of marine palaeotemperatures. The Deep Sea Drilling Project (DSDP) has provided cores from many ocean basins to conduct detailed stable isotopic and palaeoceanographic studies of the Cenozoic and late Mesozoic. DSDP Sites 277 and 292, separated by ~60° latitude in Palaeogene times, each record an 18O enrichment in benthic foraminifera of nearly 1 per mil beginning at the Eocene-Oligocene boundary. Planktonic foraminiferal trends are similar to benthic trends in the high latitude southwest Pacific Ocean, but tropical planktonics show only a minor (~0.3 per mil) increase which may reflect a change in seawater composition. These results suggest a sudden cooling of Pacific deep waters and high latitude surface waters forms a useful stratigraphic marker for the Eocene-Oligocene boundary. This boundary is particularly important because of its association with several worldwide palaeo-oceanographic and biogeographic changes. These include a sudden drop in the calcite compensation depth of 1-2 km (van Andel et al., 1975; van Andel, 1975, doi:10.1016/0012-821X(75)90086-2); a decrease in planktonic microfossil diversity (Lipps, 1970, 10.2307/2406711; Kennett, 1978, doi:10.1016/0377-8398(78)90017-8; Sancetta, 1979, doi:10.1016/0377-8398(79)90025-2); a change in planktonic biogeographic patterns (Kennett, 1978, doi:10.1016/0377-8398(78)90017-8; Sancetta, 1979, doi:10.1016/0377-8398(79)90025-2; Haq and Lohmann, 1976, doi:10.1016/0377-8398(76)90008-6); and increased erosion of deep-sea sediments over wide areas (Kennet et al., 1972; Moore et al., 1978).