972 resultados para 113-693
Resumo:
High-resolution records of carbon and oxygen isotopes and benthic foraminiferal accumulation rates for the Eocene-Oligocene section at Ocean Drilling Program Site 689 (Maud Rise, Weddell Sea; paleodepth about 1500 m) were used to infer variations in paleoproductivity in relation to changes in climate and ventilation of the deeper-water column. The benthic foraminiferal abundance and isotope records show short-term fluctuations at periodicities of 100 and 400 ka, implying orbitally driven climatic variations. Both records suggest that intermediate-depth water chemistry and primary productivity changed in response to climate. During the Eocene, productivity increased during cold periods and during cold-to-warm transitions, possibly as a result of increased upwelling of nutrient-rich waters. In the Oligocene, in contrast, productivity maxima occurred during intervals of low delta18O values (presumably warmer periods), when a proto-polar front moved to the south of the location of Site 689. This profound transition in climate-productivity patterns occurred around 37 Ma, coeval with rapid changes toward increasing variability of the oxygen and carbon isotope and benthic abundance records and toward larger-amplitude delta18O fluctuations. Therefore, we infer that, at this time, temperature fluctuations increased and a proto-polar front formed in conjunction with the first distinct pulsations in size of the Antarctic ice sheet. We speculate that this major change might have resulted from an initial opening of the Drake Passage at 37 Ma, at least for surface- and intermediate-water circulation.
Resumo:
We examined diatom preservation patterns in Pliocene age sediments of Jane Basin (ODP Site 697) and compared them with diatom distribution in more northerly sites at various sectors of the Southern Ocean. Our data from Site 697, as well as other sites from around the Southern Ocean, support the view that there was significant ice growth on Antarctica during the late Pliocene. DSDP Site 514 in the Atlantic sector shows increased relative abundance of Eucampia antarctica, an ice-related form, in the upper part of the Gauss Chron with a larger increase just above it. With one exception, all sites included in the present study show increased relative abundance of E. antarctica in the upper part of the Gauss. Our view that there was ice growth on Antarctica during the late Gauss Chron is supported by the results from ODP Site 697. While diatoms are present and percent opal is high in the early and middle Gauss Chron (suggesting more open-ocean conditions), late Gauss sediments contain low percentages of opal and few or no diatoms. This is also true for the early Matuyama Chron. If we accept spring and summer sea-ice cover as the major suppressant of diatom productivity in the Southern Ocean, then we conclude that sea-ice covered the region around Site 697 through much of the year during this interval. Further, the absence of diatoms and the low percentages of opal in middle and late Matuyama chron sediments suggests increased sea-ice cover over the Jane Basin during this time. Although warmer openocean intervals are inferred for intervals near the Olduvai and Jaramillo Subchrons, most of the Matuyama Chron was marked by extensive sea-ice cover with low seasonal contrast. Our results for the early part of the Brunhes Chron are similar, at least for the Jane Basin. During this time, sea-ice cover over the basin apparently extended well into the growing season. In contrast, the later Brunhes Chron is marked by alternating open water (during the growing season) and extensive, almost year-round, sea-ice.