998 resultados para 030699 Physical Chemistry not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to determine the creep and relaxation responses of single chondrocytes in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of single chondrocytes at the strain-rate of 7.05 s-1. This result was then employed in inverse finite element analysis (FEA) using porohyperelastic (PHE) idealization of the cells to determine their mechanical properties. The PHE model results agreed well with AFM experimental data. This PHE model was then utilized to study chondrocyte’s creep and relaxation behaviors. The results revealed that the effect of fluid was predominant for cell’s mechanical behaviors and that the PHE is a good model for biomechanics studies of chondrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common goal of tissue engineering is to develop substitutes that can closely mimic the structure of extracellular matrix (ECM). However, similarly important is the intensive material properties which have often been overlooked, in particular, for soft tissues that are not to bear load assumingly. The mechanostructural properties determine not only the structural stability of biomaterials but also their physiological functionality by directing cellular activity and regulating cell fate decision. The aim here is to emphasize that cells could sense intensive material properties like elasticity and reside, proliferate, migrate and differentiate accordinglyno matter if the construct is from a natural source like cartilage, skin etc. or of synthetic one. Meanwhile, the very objective of this work is to provide a tunable scheme for manipulating the elasticity of collagen-based constructs to be used to demonstrate how to engineer cell behavior and regulate mechanotransduction. Articular cartilage was chosen as it represents one of the most complex hierarchical arrangements of collagen meshwork in both connective tissues and ECM-like biomaterials. Corona discharge treatment was used to produce constructs with varying density of crosslinked collagen and stiffness accordingly. The results demonstrated that elastic modulus increased up to 33% for samples treated up to one minute as crosslink density was found to increase with exposure time. According to the thermal analysis, longer exposure to corona increased crosslink density as the denaturation enthalpy increased. However the spectroscopy results suggested that despite the stabilization of the collagen structure the integrity of the triple helical structure remained intact. The in vitro superficial culture of heterologous chondrocytes also determined that the corona treatment can modulate migration with increased focal adhesion of cells due to enhanced stiffness, without cytotoxicity effects, and providing the basis for reinforcing three-dimensional collagen-based biomaterials in order to direct cell function and mediate mechanotransduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical 22 and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study demonstrates a novel technique of preparing drug colloid probes to determine the adhesion force between the drug salbutamol sulphate (SS) and the surfaces of polymer microparticles to be used as carriers for the dispersion of drug particles from a dry powder inhaler (DPI) formulation. Initially model silica probes of approximately 4 μm size, similar to a drug particle used in DPI formulations, were coated with a saturated SS solution with the aid of capillary forces acting between the silica probe and the drug solution. The developed method of ensuring a smooth and uniform layer of SS on the silica probe was validated using X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Using the same technique, silica microspheres preattached on the AFM cantilever were coated with SS. The adhesion forces between the silica probe and drug coated silica (drug probe) and polymer surfaces (hydrophilic and hydrophobic) were determined. Our experimental results showed that the technique for preparing the drug probe was robust and can be used to determine the adhesion force between hydrophilic/hydrophobic drug probe and carrier surfaces to gain a better understanding on drug carrier adhesion forces in DPI formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To identify predictors for initiating and maintaining active commuting (AC) to work following the 2003 Australia's Walk to Work Day (WTWD) campaign. Methods Pre- and post-campaign telephone surveys of a cohort of working age (18–65years) adults (n = 1100, 55% response rate). Two dependent campaign outcomes were assessed: initiating or maintaining AC (i.e., walk/cycle and public transport) on a single day (WTWD), and increasing or maintaining health-enhancing active commuting (HEAC) level (≥ 30min/day) in a usual week following WTWD campaign. Results A significant population-level increase in HEAC (3.9%) was observed (McNemar's χ2 = 6.53, p = 0.01) with 136 (19.0%) achieving HEAC at post campaign. High confidence in incorporating walking into commute, being active pre-campaign and younger age (< 46years) were positively associated with both outcomes. The utility of AC for avoiding parking hassles (AOR = 2.1, 95% CI: 1.2–3.6), for less expense (AOR = 1.8, 95% CI: 1.1–3.1), for increasing one's health (AOR = 2.5, 95% CI: 1.1–5.6) and for clean air (AOR = 2.2, 95% CI: 1.0–4.4) predicted HEAC outcome whereas avoiding the stress of driving (AOR = 2.6, 95% CI: 1.4–5.0) and the hassle of parking predicted the single-day AC. Conclusions Transportation interventions targeting parking and costs could be further enhanced by emphasizing health benefits of AC. AC was less likely to occur among inactive employees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compromised angiogenesis appears to be a major limitation in various suboptimal bone healing situations. Appropriate mechanical stimuli support blood vessel formation in vivo and improve healing outcomes. However, the mechanisms responsible for this association are unclear. To address this question, the paracrine angiogenic potential of early human fracture haematoma and its responsiveness to mechanical loading, as well as angiogenic growth factors involved, were investigated in vitro. Human haematomas were collected from healthy patients undergoing surgery within 72. h after bone fracture. The haematomas were embedded in a fibrin matrix, and cultured in a bioreactor resembling the in vivo conditions of the early phase of bone healing (20 compression, 1. Hz) over 3. days. Conditioned medium (CM) from the bioreactor was then analyzed. The matrices were also incubated in fresh medium for a further 24. h to evaluate the persistence of the effects. Growth factor (GF) concentrations were measured in the CM by ELISAs. In vitro tube formation assays were conducted on Matrigel with the HMEC-1 cell line, with or without inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Cell numbers were quantified using an MTS test. In vitro endothelial tube formation was enhanced by CM from haematomas, compared to fibrin controls. The angiogenesis regulators, vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1), were released into the haematoma CM, but not angiopoietins 1 or 2 (Ang1, 2), basic fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF). Mechanical stimulation of haematomas, but not fibrin controls, further increased the induction of tube formation by their CM. The mechanically stimulated haematoma matrices retained their elevated pro-angiogenic capacity for 24. h. The pro-angiogenic effect was cancelled by inhibition of VEGFR2 signalling. VEGF concentrations in CM tended to be elevated by mechanical stimulation; this was significant in haematomas from younger, but not from older patients. Other GFs were not mechanically regulated. In conclusion, the paracrine pro-angiogenic capacity of early human haematomas is enhanced by mechanical stimulation. This effect lasts even after removing the mechanical stimulus and appears to be VEGFR2-dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grained level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stagnation-point total heat transfer was measured on a 1:27.7 model of the Flight Investigation of Reentry Environment II flight vehicle. Experiments were performed in the X1 expansion tube at an equivalent flight velocity and static enthalpy of 11 km/s and 12.7 MJ/kg, respectively. Conditions were chosen to replicate the flight condition at a total flight time of 1639.5 s, where radiation contributed an estimated 17-36% of the total heat transfer. This contribution is theorized to reduce to <2% in the scaled experiments, and the heating environment on the test model was expected to be dominated by convection. A correlation between reported flight heating rates and expected experimental heating, referred to as the reduced flight value, was developed to predict the level of heating expected on the test model. At the given flow conditions, the reduced flight value was calculated to be 150 MW/m2. Average stagnation-point total heat transfer was measured to be 140 ± 7% W/m2, showing good agreement with the predicted value. Experimentally measured heat transfer was found to have good agreement of between 5 and 15% with a number of convective heating correlations, confirming that convection dominates the tunnel heating environment, and that useful experimental measurements could be made in weakly coupled radiating flow

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Physical activity, particularly walking, is greatly beneficial to health; yet a sizeable proportion of older adults are insufficiently active. The importance of built environment attributes for walking is known, but few studies of older adults have examined neighbourhood destinations and none have investigated access to specific, objectively-measured commercial destinations and walking. METHODS: We undertook a secondary analysis of data from the Western Australian state government's health surveillance survey for those aged 65--84 years and living in the Perth metropolitan region from 2003--2009 (n = 2,918). Individual-level road network service areas were generated at 400 m and 800 m distances, and the presence or absence of six commercial destination types within the neighbourhood service areas identified (food retail, general retail, medical care services, financial services, general services, and social infrastructure). Adjusted logistic regression models examined access to and mix of commercial destination types within neighbourhoods for associations with self-reported walking behaviour. RESULTS: On average, the sample was aged 72.9 years (SD = 5.4), and was predominantly female (55.9%) and married (62.0%). Overall, 66.2% reported some weekly walking and 30.8% reported sufficient walking (>=150 min/week). Older adults with access to general services within 400 m (OR = 1.33, 95% CI = 1.07-1.66) and 800 m (OR = 1.20, 95% CI = 1.02-1.42), and social infrastructure within 800 m (OR = 1.19, 95% CI = 1.01-1.40) were more likely to engage in some weekly walking. Access to medical care services within 400 m (OR = 0.77, 95% CI = 0.63-0.93) and 800 m (OR = 0.83, 95% CI = 0.70-0.99) reduced the odds of sufficient walking. Access to food retail, general retail, financial services, and the mix of commercial destination types within the neighbourhood were all unrelated to walking. CONCLUSIONS: The types of neighbourhood commercial destinations that encourage older adults to walk appear to differ slightly from those reported for adult samples. Destinations that facilitate more social interaction, for example eating at a restaurant or church involvement, or provide opportunities for some incidental social contact, for example visiting the pharmacy or hairdresser, were the strongest predictors for walking among seniors in this study. This underscores the importance of planning neighbourhoods with proximate access to social infrastructure, and highlights the need to create residential environments that support activity across the life course.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This exploratory enquiry employs qualitative methods to advance knowledge and understanding of physical environmental attributes related to active living among residents of Australian retirement villages. Six focus groups (n = 51 residents) were held and participants described how their current, and subsequently ideal, retirement village and neighborhood supported active lifestyles. Thematic analysis revealed three key environmental factors associated with active living: a positive social environment within the village; services and facilities provided in the village and wider neighborhood; and the presence of suitable pedestrian infrastructure. The unique discovery that environmental factors of both the retirement village and the surrounding neighborhood were associated with residents’ active living raises many questions for study. Findings informed the development of a survey instrument, and further understanding in this area has the potential to contribute to the design and siting practices of senior housing complexes within neighborhoods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Self-selection-whether individuals inclined to walk more seek to live in walkable environments-must be accounted for when studying built environment influences on walking. The way neighborhoods are marketed to future residents has the potential to sway residential location choice, and may consequently affect measures of self-selection related to location preferences. We assessed how walking opportunities are promoted to potential buyers, by examining walkability attributes in marketing materials for housing developments. Methods: A content analysis of marketing materials for 32 new housing developments in Perth, Australia was undertaken, to assess how walking was promoted in the text and pictures. Housing developments designed to be pedestrian-friendly (LDs) were compared with conventional developments (CDs). Results: Compared with CDs, LD marketing materials had significantly more references to 'public transport,' small home sites,' walkable parks/open space,' ease of cycling,' safe environment,' and 'boardwalks.' Other walkability attributes approached significance. Conclusion: Findings suggest the way neighborhoods are marketed may contribute to self-reported reasons for choosing particular neighborhoods, especially when attributes are not present at the time of purchase. The marketing of housing developments may be an important factor to consider when measuring self-selection, and its influence on the built environment and walking relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Variations in 'slope' (how steep or flat the ground is) may be good for health. As walking up hills is a physiologically vigorous physical activity and can contribute to weight control, greater neighbourhood slopes may provide a protective barrier to weight gain, and help prevent Type 2 diabetes onset. We explored whether living in 'hilly' neighbourhoods was associated with diabetes prevalence among the Australian adult population. METHODS: Participants ([greater than or equal to]25years; n=11,406) who completed the Western Australian Health and Wellbeing Surveillance System Survey (2003-2009) were asked whether or not they had medically-diagnosed diabetes. Geographic Information Systems (GIS) software was used to calculate a neighbourhood mean slope score, and other built environment measures at 1600m around each participant's home. Logistic regression models were used to predict the odds of self-reported diabetes after progressive adjustment for individual measures (i.e., age, sex), socioeconomic status (i.e., education, income), built environment, destinations, nutrition, and amount of walking. RESULTS: After full adjustment, the odds of self-reported diabetes was 0.72 (95% CI 0.55-0.95) and 0.52 (95% CI 0.39-0.69) for adults living in neighbourhoods with moderate and higher levels of slope, respectively, compared with adults living in neighbourhoods with the lowest levels of slope. The odds of having diabetes was 13% lower (odds ratio 0.87; 95% CI 0.80-0.94) for each increase of one percent in mean slope. CONCLUSIONS: Living in a hilly neighbourhood may be protective of diabetes onset or this finding is spurious. Nevertheless, the results are promising and have implications for future research and the practice of flattening land in new housing developments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The built environment is increasingly recognised as being associated with health outcomes. Relationships between the built environment and health differ among age groups, especially between children and adults, but also between younger, mid-age and older adults. Yet few address differences across life stage groups within a single population study. Moreover, existing research mostly focuses on physical activity behaviours, with few studying objective clinical and mental health outcomes. The Life Course Built Environment and Health (LCBEH) project explores the impact of the built environment on self-reported and objectively measured health outcomes in a random sample of people across the life course. Methods and analysis: This cross-sectional data linkage study involves 15 954 children (0–15 years), young adults (16–24 years), adults (25–64 years) and older adults (65+years) from the Perth metropolitan region who completed the Health and Wellbeing Surveillance System survey administered by the Department of Health of Western Australia from 2003 to 2009. Survey data were linked to Western Australia's (WA) Hospital Morbidity Database System (hospital admission) and Mental Health Information System (mental health system outpatient) data. Participants’ residential address was geocoded and features of their ‘neighbourhood’ were measured using Geographic Information Systems software. Associations between the built environment and self-reported and clinical health outcomes will be explored across varying geographic scales and life stages. Ethics and dissemination: The University of Western Australia's Human Research Ethics Committee and the Department of Health of Western Australia approved the study protocol (#2010/1). Findings will be published in peer-reviewed journals and presented at local, national and international conferences, thus contributing to the evidence base informing the design of healthy neighbourhoods for all residents.