1000 resultados para ÓRBITA SOLAR
Resumo:
Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.
Resumo:
Taking into account the fact that the sun’s radiation is estimated to be enough to cover 10.000 times the world’s total energy needs (BRAKMANN & ARINGHOFF, 2003), it is difficult to understand how solar photovoltaic systems (PV) are still such a small part of the energy source matrix across the globe. Though there is an ongoing debate as to whether energy consumption leads to economic growth or whether it is the other way around, the two variables appear correlated and it is clear that ensuring the availability of energy to match a country’s growth targets is one of the prime concerns for any government. The topic of centralized vs distributed electricity generation is also approached, especially in what regards the latter fit to developing countries needs, namely the lack of investment capabilities and infrastructure, scattered population, and other factors. Finally, Brazil’s case is reviewed, showing that the current cost of electricity from the grid versus the cost from PV solutions still places an investment of this nature with 9 to 16 years to reach breakeven (from a 25 year panel lifespan), which is too high compared to the required 4 years for most Brazilians. Still, recently passed legislation opened the door, even if unknowingly, to the development of co-owned solar farms, which could reduce the implementation costs by as much as 20% and hence reduce the number of years to breakeven by 3 years.
Resumo:
[Traité (recueil). Royaume de Sardaigne (français)]
Resumo:
[Traité (recueil). Royaume de Sardaigne (français)]
Resumo:
[Traité (recueil). Royaume de Sardaigne (français)]
Resumo:
[Traité (recueil). Royaume de Sardaigne (français)]
Resumo:
[Traité (recueil). Royaume de Sardaigne (français)]
Resumo:
Servicios registrales
Resumo:
Passive solar building design is the process of designing a building while considering sunlight exposure for receiving heat in winter and rejecting heat in summer. The main goal of a passive solar building design is to remove or reduce the need of mechanical and electrical systems for cooling and heating, and therefore saving energy costs and reducing environmental impact. This research will use evolutionary computation to design passive solar buildings. Evolutionary design is used in many research projects to build 3D models for structures automatically. In this research, we use a mixture of split grammar and string-rewriting for generating new 3D structures. To evaluate energy costs, the EnergyPlus system is used. This is a comprehensive building energy simulation system, which will be used alongside the genetic programming system. In addition, genetic programming will also consider other design and geometry characteristics of the building as search objectives, for example, window placement, building shape, size, and complexity. In passive solar designs, reducing energy that is needed for cooling and heating are two objectives of interest. Experiments show that smaller buildings with no windows and skylights are the most energy efficient models. Window heat gain is another objective used to encourage models to have windows. In addition, window and volume based objectives are tried. To examine the impact of environment on designs, experiments are run on five different geographic locations. Also, both single floor models and multi-floor models are examined in this research. According to the experiments, solutions from the experiments were consistent with respect to materials, sizes, and appearance, and satisfied problem constraints in all instances.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Ingeniería Cerámica) U.A.N.L.
Resumo:
Tesis (Maestro en Ciencias de la Ingeniería con Especialidad en Telecomunicaciones) U.A.N.L.
Resumo:
Tesis (Maestro en Ciencias en Producción Agrícola) UANL, 2010.
Resumo:
Tesis (Maestría en Ciencias con Orientación en Química Analítica Ambiental) UANL, 2010.
Resumo:
Tesis (Maestría en Ciencias con Orientación en Procesos Sustentables) UANL, 2012.
Resumo:
Tesis (Maestría en Ciencias con Orientación en Química Analítica Ambiental) UANL, 2011.