931 resultados para Échangeur de chaleur Shell
Resumo:
Mode of access: Internet.
Resumo:
Carotenoids, particularly astaxanthin, are the primary pigment in crustacean shell colour. Sub-adults of the western rock lobster, Panulirus cygnus, moult from a deep red colour (termed the red phase) to a much paler colour (the white phase) at sexual maturation. We observe a 2.4-fold difference in the amount of total carotenoid present in the shell extracts of reds compared to whites, as might be expected. However, analysis of the underlying epithelium shows that there is no correlation with shell colour and the amount of free (unesterified) astaxanthin-the level of free astaxanthin in reds and whites is not significantly different. Instead, we observe a correlated two-fold difference in the amount of esterified astaxanthin present in the epithelium of red versus white individuals. These data suggest a role for esterified astaxanthin in regulating shell colour formation and suggest that esterification may promote secretion and eventual incorporation of unesterified astaxanthin into the exoskeleton. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Shell-crosslinked knedel-like nanoparticles (SCKs; knedel is a Polish term for dumplings) were derivatized with gadolinium Shell chelates and studied as robust magnetic-resonance-imaging-active structures with hydrodynamic diameters of 40 +/- 3 nm. SCKs possessing an amphiphilic core-shell morphology were produced from the aqueous assembly of diblock copolymers of poly(acrylic acid) (PAA) and poly(methyl acrylate) (PMA), PAA(52)-b-PMA(128), and subsequent covalent crosslinking by amidation upon reaction with 2,2'-(ethylenedioxy)bis(ethylamine) throughout the shell layer. The properties of these materials, including non-toxicity towards mammalian cells, non-immunogenicity within mice, and capability for polyvalent targeting, make them ideal candidates for utilization within biological systems. The synthesis of SCKs derivatized with Gd-III and designed for potential use as a unique nanometer-scale contrast agent for MRI applications is described herein. Utilization of an amino-functionalized diethylenetriaminepentaacetic acid-Gd analogue allowed for direct covalent conjugation throughout the hydrophilic shell layer of the SCKs and served to increase the rotational correlation lifetime of the Gd. In addition, the highly hydrated nature of the shell layer in which the Gd was located allowed for rapid water exchange; thus, the resulting material demonstrated large ionic relaxivities (39 s(-1) mM(-1)) in an applied magnetic field of 0.47 T at 40 degrees C and, as a result of the large loading capacity of the material, also demonstrated high molecular relaxivities (20 000 s(-1) mM(-1)).
Resumo:
Background: Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks. Results: Here we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl) deposition. Conclusion: The unexpected complexity and evolvability of this secretome and the modular design of the molluskan mantle enables diversification of shell strength and design, and as such must contribute to the variety of adaptive architectures and colors found in mollusk shells. The composition of this novel mantle-specific secretome suggests that there are significant molecular differences in the ways in which gastropods synthesize their shells.
Resumo:
Local mass transfer coefficients were determined by using the electrochemical technique. A simple model of a heat exchanger with segmental nickel tube joined to p.v.c. rods replaced the exchanger tubes. Measurements were made for both no-Ieakage, semi-leakage and total leakage configurations. Baffle-spacings of 47.6 mm, 66.6 mm, 97 mm and 149.2 mm wer studied. Also studied were the overall exchanger pressure drops for each configuration. The comparison of the heat transfer data with this work showed good agreement at high flow rates for the no-leakage case, but the agreement became poor for lower flow rates and leakage configurations. This disagreement was explained by non-analogous driving forces existing in the two systems. The no-leakage data showed length-wise variation of transfer coefficients along the exchanger length. The end compartments showing transfer coefficients inferior by up to 26% compared to tbe internal compartments, depending on Reynolds number. With the introduction of leakage streams this variation however became smaller than the experimental accuracy. A model is outlined to show the characteristic behaviour of individual electrode segments within the compartment. This was able to discriminate between cross and window zones for the no- leakage case, but no such distinction could be made for the leakage case. A flow area was found which, when incorporated in the Reynolds number, enabled the correlation of baffle-cut and baffle-spacing parameters for the no-leakage case . This area is the free flow area determined at the baffle edge. Addition of the leakage area to this flow area resulted in correlation of all commercial leakage geometrical parameters. The procedures used to correlate the pressure drop data from a total of eighteen different configurations on a single curve are also outlined.
Resumo:
A diffusion-controlled electrochemical mass transfer technique has been employed in making local measurements of shell-side coefficients in segmentally baffled shell and tube heat exchangers. Corresponding heat transfer data are predicted through the Chilton and Colburn heat and mass transfer analogy. Mass transfer coefficients were measured for baffle spacing lengths of individual tubes in an internal baffle compartment. Shell-side pressure measurements were also made. Baffle compartment average coefficients derived from individual tube coefficients are shown to be in good agreement with reported experimental bundle average heat transfer data for a heat exchanger model of similar geometry. Mass transfer coefficients of individual tubes compare favourably with those obtained previously by another mass transfer technique. Experimental data are reported for a variety of segmental baffle configurations over the shell-side Reynolds number range 100 to 42 000. Baffles with zero clearances were studied at three baffle cuts and two baffle spacings. Baffle geometry is shown to have a large effect on the distribution of tube coefficients within the baffle compartment. Fluid "jetting" is identified with some baffle configurations. No simple characteristic velocity is found to correlate zonal or baffle compartment average mass transfer data for the effect of both baffle cut and baffle spacing. Experiments with baffle clearances typical of commercial heat exchangers are also reported. The effect of leakage streams associated with these baffles is identified. Investigations were extended to double segmental baffles for which no data had previously been published. The similarity in the shell-side characteristics of this baffle arrangement and two parallel single segmental baffle arrangements is demonstrated. A general relationship between the shell-side mass transfer performance and pressure drop was indicated by the data for all the baffle configurations examined.
Resumo:
The structure of wurtzite and zinc blende InAs-GaAs (001) core-shell nanowires grown by molecular beam epitaxy on GaAs (001) substrates has been investigated by transmission electron microscopy. Heterowires with InAs core radii exceeding 11 nm, strain relax through the generation of misfit dislocations, given a GaAs shell thickness greater than 2.5 nm. Strain relaxation is larger in radial directions than axial, particularly for shell thicknesses greater than 5.0 nm, consistent with molecular statics calculations that predict a large shear stress concentration at each interface corner. © 2012 American Institute of Physics.
Resumo:
Local shell side coefficient measurements in the end conpartments of a model shell and tube heat exchanger have been made using an electrochemical technique. Limited data are also reported far the second compartment. The end compartment average coefficients have been found to be smaller than reported data for a corresponding internal conpartment. The second compartment data. have been shown to lie between those for the end compartments and the reported internal compartment data. Experimental data are reported fcr two port types and two baffle orientations. with data for the case of an inlet compartment impingement baffle also being given . Port type is shown to have a small effect on compartment coefficients, these being largely unaffected. Likewise, the outlet compartment average coefficients are slightly snaller than those for the inlet compartment, with the distribution of individual tube coefficients being similar. Baffle orientation has been shown to have no effect on average coefficients, but the distribution of the data is substantially affected. The use of an impingement baffle in the inlet compartment lessens the efect of baffle orientation on distribution . Recommendations are made for future work.
Resumo:
Accurate prediction of shellside pressure drop in a baffled shell-and-tube heat exchanger is very difficult because of the complicated shellside geometry. Ideally, all the shellside fluid should be alternately deflected across the tube bundle as it traverses from inlet to outlet. In practice, up to 60% of the shellside fluid may bypass the tube bundle or leak through the baffles. This short-circuiting of the main flow reduces the efficiency of the exchanger. Of the various shellside methods, it is shown that only the multi-stream methods, which attempt to obtain the shellside flow distribution, predict the pressure drop with any degree of accuracy, the various predictions ranging from -30% to +70%, generally overpredicting. It is shown that the inaccuracies are mainly due to the manner in which baffle leakage is modelled. The present multi-stream methods do not allow for interactions of the various flowstreams, and yet it is shown that three main effects are identified, a) there is a strong interaction between the main cross flow and the baffle leakage streams, enhancing the crossflow pressure drop, b) there is a further short-circuit not considered previously i.e. leakage in the window, and c) the crossflow does not penetrate as far, on average, as previously supposed. Models are developed for each of these three effects, along with a new windowflow pressure drop model, and it is shown that the effect of baffle leakage in the window is the most significant. These models developed to allow for various interactions, lead to an improved multi-stream method, named the "STREAM-INTERACTION" method. The overall method is shown to be consistently more accurate than previous methods, with virtually all the available shellside data being predicted to within ±30% and over 60% being within ±20%. The method is, thus, strongly recommended for use as a design method.