986 resultados para (a) Partly escaped from laser sooting


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements made with an Aquatic Laser Fluorescence Analyzer (ALFA) (Chekalyuk et al., 2014), connected in-line to the TARA flow through system during 2013. The ALFA instrument provides dual-wavelength excitation (405 and 514 nm) of laser-stimulated emission (LSE) for spectral and temporal analysis. It offers in vivo fluorescence assessments of phytoplankton pigments, biomass, photosynthetic yield (Fv/Fm), phycobiliprotein (PBP)-containing phytoplankton groups, and chromophoric dissolved organic matter (CDOM) (Chekalyuk and Hafez, 2008; 2013A). Spectral deconvolution (SDC) is used to assess the overlapped spectral bands of aquatic fluorescence constituents and water Raman scattering (R). The Fv/Fm measurements are spectrally corrected for non-chlorophyll fluorescence background produced by CDOM and other constituents (Chekalyuk and Hafez, 2008). The sensor was cleaned weakly following the manufacturer recommended protocol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biological activity introduces variability in element incorporation during calcification and thereby decreases the precision and accuracy when using foraminifera as geochemical proxies in paleoceanography. This so-called 'vital effect' consists of organismal and environmental components. Whereas organismal effects include uptake of ions from seawater and subsequent processing upon calcification, environmental effects include migration- and seasonality-induced differences. Triggering asexual reproduction and culturing juveniles of the benthic foraminifer Ammonia tepida under constant, controlled conditions allow environmental and genetic variability to be removed and the effect of cell-physiological controls on element incorporation to be quantified. Three groups of clones were cultured under constant conditions while determining their growth rates, size-normalized weights and single-chamber Mg/Ca and Sr/Ca using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Results show no detectable ontogenetic control on the incorporation of these elements in the species studied here. Despite constant culturing conditions, Mg/Ca varies by a factor of similar to 4 within an individual foraminifer while intra-individual Sr/Ca varies by only a factor of 1.6. Differences between clone groups were similar to the intra-clone group variability in element composition, suggesting that any genetic differences between the clone-groups studied here do not affect trace element partitioning. Instead, variability in Mg/Ca appears to be inherent to the process of bio-calcification itself. The variability in Mg/Ca between chambers shows that measurements of at least 6 different chambers are required to determine the mean Mg/Ca value for a cultured foraminiferal test with a precision of <= 10%