888 resultados para word-cued memories
Resumo:
This paper explores the literature and analyses the different uses and understandings of the word “design” in Portuguese colonised countries, using Brazil as the main example. It investigates the relationship between the linguistic existence of terms to define and describe “design” as an activity and field, and the roles and perceptions of Design by the general society. It also addresses the effects that the lack of a proper translation causes on the local community from a cultural point of view. The current perception of Design in Portuguese colonies is associated to two main aspects: linguistic and historical. Both of them differentiate the countries taken into consideration from other countries that have a different background. The changes associated to the meaning of “design” throughout the years, caused a great impact on the perceptions that people have about Design. On the other hand, the development of Design has also influenced the changes on the meaning of the term, as a result of the legacy from the colonisation period and also as a characteristic of the Portuguese language. Design has developed and reached a level of excellence in Portuguese colonised countries that competes with the most traditional Design cultures in the world. However, this level of Design is enmeshed into an elite belonging to universities and specialised markets, therefore Design is not democratised. The ultimate aim of this study is to promote discussions on how to make the discourse surrounding this area more accessible to people from non-English speaking countries that do not have the word “design” in their local language.
Resumo:
The lateral amygdala (LA) receives information from auditory and visual sensory modalities, and uses this information to encode lasting memories that predict threat. One unresolved question about the amygdala is how multiple memories, derived from different sensory modalities, are organized at the level of neuronal ensembles. We previously showed that fear conditioning using an auditory conditioned stimulus (CS) was spatially allocated to a stable topography of neurons within the dorsolateral amygdala (LAd) (Bergstrom et al, 2011). Here, we asked how fear conditioning using a visual CS is topographically organized within the amygdala. To induce a lasting fear memory trace we paired either an auditory (2 khz, 55 dB, 20 s) or visual (1 Hz, 0.5 s on/0.5 s off, 35 lux, 20 s) CS with a mild foot shock unconditioned stimulus (0.6 mA, 0.5 s). To detect learning-induced plasticity in amygdala neurons, we used immunohistochemistry with an antibody for phosphorylated mitogen-activated protein kinase (pMAPK). Using a principal components analysis-based approach to extract and visualize spatial patterns, we uncovered two unique spatial patterns of activated neurons in the LA that were associated with auditory and visual fear conditioning. The first spatial pattern was specific to auditory cued fear conditioning and consisted of activated neurons topographically organized throughout the LAd and ventrolateral nuclei (LAvl) of the LA. The second spatial pattern overlapped for auditory and visual fear conditioning and was comprised of activated neurons located mainly within the LAvl. Overall, the density of pMAPK labeled cells throughout the LA was greatest in the auditory CS group, even though freezing in response to the visual and auditory CS was equivalent. There were no differences detected in the number of pMAPK activated neurons within the basal amygdala nuclei. Together, these results provide the first basic knowledge about the organizational structure of two different fear engrams within the amygdala and suggest they are dissociable at the level of neuronal ensembles within the LA
Resumo:
Tunable charge-trapping behaviors including unipolar charge trapping of one type of charge carrier and ambipolar trapping of both electrons and holes in a complementary manner is highly desirable for low power consumption multibit flash memory design. Here, we adopt a strategy of tuning the Fermi level of reduced graphene oxide (rGO) through self-assembled monolayer (SAM) functionalization and form p-type and n-type doped rGO with a wide range of manipulation on work function. The functionalized rGO can act as charge-trapping layer in ambipolar flash memories, and a dramatic transition of charging behavior from unipolar trapping of electrons to ambipolar trapping and eventually to unipolar trapping of holes was achieved. Adjustable hole/electron injection barriers induce controllable Vth shift in the memory transistor after programming operation. Finally, we transfer the ambipolar memory on flexible substrates and study their charge-trapping properties at various bending cycles. The SAM-functionalized rGO can be a promising candidate for next-generation nonvolatile memories.
Resumo:
Increased longevity and the need to fund living and care expenses across late old age, greater proportions of blended and culturally diverse families and concerns about the increasing possibility of contestation of wills highlight the importance of understanding current will making practices and intentions. Yet, there is no current national data on the prevalence of wills, intended beneficiaries, the principles and practices surrounding will making and the patterns and outcomes of contestation. This project sought to address this gap. This report summarises the results of a four year program of research examining will making and will contestation in Australia. The project was funded by the Australian Research Council (LP10200891) in conjunction with seven Public Trustee Organisations across Australia. The interdisciplinary research team with expertise in social science, social work, law and social policy are from The University of Queensland, Queensland University of Technology and Victoria University. The project comprised five research studies: a national prevalence survey, a judicial case review, a review of Public Trustee files, an online survey of will drafters and in-depth interviews with key groups of interest. The report outlines key findings. On the basis of the evidence provided recommendations are presented to support the achievement of these policy goals: increasing will making in the Australian population, ensuring that the wills of those Australians who have taken this step reflect their current situation and intentions, and reducing will contestation.
Resumo:
This article presents and evaluates a model to automatically derive word association networks from text corpora. Two aspects were evaluated: To what degree can corpus-based word association networks (CANs) approximate human word association networks with respect to (1) their ability to quantitatively predict word associations and (2) their structural network characteristics. Word association networks are the basis of the human mental lexicon. However, extracting such networks from human subjects is laborious, time consuming and thus necessarily limited in relation to the breadth of human vocabulary. Automatic derivation of word associations from text corpora would address these limitations. In both evaluations corpus-based processing provided vector representations for words. These representations were then employed to derive CANs using two measures: (1) the well known cosine metric, which is a symmetric measure, and (2) a new asymmetric measure computed from orthogonal vector projections. For both evaluations, the full set of 4068 free association networks (FANs) from the University of South Florida word association norms were used as baseline human data. Two corpus based models were benchmarked for comparison: a latent topic model and latent semantic analysis (LSA). We observed that CANs constructed using the asymmetric measure were slightly less effective than the topic model in quantitatively predicting free associates, and slightly better than LSA. The structural networks analysis revealed that CANs do approximate the FANs to an encouraging degree.
Resumo:
Industrial production and supply chains face increased demands for mass customization and tightening regulations on the traceability of goods, leading to higher requirements concerning flexibility, adaptability, and transparency of processes. Technologies for the ’Internet of Things' such as smart products and semantic representations pave the way for future factories and supply chains to fulfill these challenging market demands. In this chapter a backend-independent approach for information exchange in open-loop production processes based on Digital Product Memories DPMs is presented. By storing order-related data directly on the item, relevant lifecycle information is attached to the product itself. In this way, information handover between several stages of the value chain with focus on the manufacturing phase of a product has been realized. In order to report best practices regarding the application of DPM in the domain of industrial production, system prototype implementations focusing on the use case of producing and handling a smart drug case are illustrated.
Resumo:
Spoken word production is assumed to involve stages of processing in which activation spreads through layers of units comprising lexical-conceptual knowledge and their corresponding phonological word forms. Using high-field (4T) functional magnetic resonance imagine (fMRI), we assessed whether the relationship between these stages is strictly serial or involves cascaded-interactive processing, and whether central (decision/control) processing mechanisms are involved in lexical selection. Participants performed the competitor priming paradigm in which distractor words, named from a definition and semantically related to a subsequently presented target picture, slow picture-naming latency compared to that with unrelated words. The paradigm intersperses two trials between the definition and the picture to be named, temporally separating activation in the word perception and production networks. Priming semantic competitors of target picture names significantly increased activation in the left posterior temporal cortex, and to a lesser extent the left middle temporal cortex, consistent with the predictions of cascaded-interactive models of lexical access. In addition, extensive activation was detected in the anterior cingulate and pars orbitalis of the inferior frontal gyrus. The findings indicate that lexical selection during competitor priming is biased by top-down mechanisms to reverse associations between primed distractor words and target pictures to select words that meet the current goal of speech.
Resumo:
The speed at which target pictures are named increases monotonically as a function of prior retrieval of other exemplars of the same semantic category and is unaffected by the number of intervening items. This cumulative semantic interference effect is generally attributed to three mechanisms: shared feature activation, priming and lexical-level selection. However, at least two additional mechanisms have been proposed: (1) a 'booster' to amplify lexical-level activation and (2) retrieval-induced forgetting (RIF). In a perfusion functional Magnetic Resonance Imaging (fMRI) experiment, we tested hypotheses concerning the involvement of all five mechanisms. Our results demonstrate that the cumulative interference effect is associated with perfusion signal changes in the left perirhinal and middle temporal cortices that increase monotonically according to the ordinal position of exemplars being named. The left inferior frontal gyrus (LIFG) also showed significant perfusion signal changes across ordinal presentations; however, these responses did not conform to a monotonically increasing function. None of the cerebral regions linked with RIF in prior neuroimaging and modelling studies showed significant effects. This might be due to methodological differences between the RIF paradigm and continuous naming as the latter does not involve practicing particular information. We interpret the results as indicating priming of shared features and lexical-level selection mechanisms contribute to the cumulative interference effect, while adding noise to a booster mechanism could account for the pattern of responses observed in the LIFG.
Resumo:
Previous neuroimaging research has attempted to demonstrate a preferential involvement of the human mirror neuron system (MNS) in the comprehension of effector-related action word (verb) meanings. These studies have assumed that Broca's area (or Brodmann's area 44) is the homologue of a monkey premotor area (F5) containing mouth and hand mirror neurons, and that action word meanings are shared with the mirror system due to a proposed link between speech and gestural communication. In an fMRI experiment, we investigated whether Broca's area shows mirror activity solely for effectors implicated in the MNS. Next, we examined the responses of empirically determined mirror areas during a language perception task comprising effector-specific action words, unrelated words and nonwords. We found overlapping activity for observation and execution of actions with all effectors studied, i.e., including the foot, despite there being no evidence of foot mirror neurons in the monkey or human brain. These "mirror" areas showed equivalent responses for action words, unrelated words and nonwords, with all of these stimuli showing increased responses relative to visual character strings. Our results support alternative explanations attributing mirror activity in Broca's area to covert verbalisation or hierarchical linearisation, and provide no evidence that the MNS makes a preferential contribution to comprehending action word meanings.
Resumo:
Studies of semantic context effects in spoken word production have typically distinguished between categorical (or taxonomic) and associative relations. However, associates tend to confound semantic features or morphological representations, such as whole-part relations and compounds (e.g., BOAT-anchor, BEE-hive). Using a picture-word interference paradigm and functional magnetic resonance imaging (fMRI), we manipulated categorical (COW-rat) and thematic (COW-pasture) TARGET-distractor relations in a balanced design, finding interference and facilitation effects on naming latencies, respectively, as well as differential patterns of brain activation compared with an unrelated distractor condition. While both types of distractor relation activated the middle portion of the left middle temporal gyrus (MTG) consistent with retrieval of conceptual or lexical representations, categorical relations involved additional activation of posterior left MTG, consistent with retrieval of a lexical cohort. Thematic relations involved additional activation of the left angular gyrus. These results converge with recent lesion evidence implicating the left inferior parietal lobe in processing thematic relations and may indicate a potential role for this region during spoken word production.
Resumo:
We used event-related fMRI to investigate the neural correlates of encoding strength and word frequency effects in recognition memory. At test, participants made Old/New decisions to intermixed low (LF) and high frequency (HF) words that had been presented once or twice at study and to new, unstudied words. The Old/New effect for all hits vs. correctly rejected unstudied words was associated with differential activity in multiple cortical regions, including the anterior medial temporal lobe (MTL), hippocampus, left lateral parietal cortex and anterior left inferior prefrontal cortex (LIPC). Items repeated at study had superior hit rates (HR) compared to items presented once and were associated with reduced activity in the right anterior MTL. By contrast, other regions that had shown conventional Old/New effects did not demonstrate modulation according to memory strength. A mirror effect for word frequency was demonstrated, with the LF word HR advantage associated with increased activity in the left lateral temporal cortex. However, none of the regions that had demonstrated Old/New item retrieval effects showed modulation according to word frequency. These findings are interpreted as supporting single-process memory models proposing a unitary strength-like memory signal and models attributing the LF word HR advantage to the greater lexico-semantic context-noise associated with HF words due to their being experienced in many pre-experimental contexts.
Resumo:
Word frequency (WF) and strength effects are two important phenomena associated with episodic memory. The former refers to the superior hit-rate (HR) for low (LF) compared to high frequency (HF) words in recognition memory, while the latter describes the incremental effect(s) upon HRs associated with repeating an item at study. Using the "subsequent memory" method with event-related fMRI, we tested the attention-at-encoding (AE) [M. Glanzer, J.K. Adams, The mirror effect in recognition memory: data and theory, J. Exp. Psychol.: Learn Mem. Cogn. 16 (1990) 5-16] explanation of the WF effect. In addition to investigating encoding strength, we addressed if study involves accessing prior representations of repeated items via the same mechanism as that at test [J.L. McClelland, M. Chappell, Familiarity breeds differentiation: a subjective-likelihood approach to the effects of experience in recognition memory, Psychol. Rev. 105 (1998) 724-760], entailing recollection [K.J. Malmberg, J.E. Holden, R.M. Shiffrin, Modeling the effects of repetitions, similarity, and normative word frequency on judgments of frequency and recognition memory, J. Exp. Psychol.: Learn Mem. Cogn. 30 (2004) 319-331] and whether less processing effort is entailed for encoding each repetition [M. Cary, L.M. Reder, A dual-process account of the list-length and strength-based mirror effects in recognition, J. Mem. Lang. 49 (2003) 231-248]. The increased BOLD responses observed in the left inferior prefrontal cortex (LIPC) for the WF effect provide support for an AE account. Less effort does appear to be required for encoding each repetition of an item, as reduced BOLD responses were observed in the LIPC and left lateral temporal cortex; both regions demonstrated increased responses in the conventional subsequent memory analysis. At test, a left lateral parietal BOLD response was observed for studied versus unstudied items, while only medial parietal activity was observed for repeated items at study, indicating that accessing prior representations at encoding does not necessarily occur via the same mechanism as that at test, and is unlikely to involve a conscious recall-like process such as recollection. This information may prove useful for constraining cognitive theories of episodic memory.
Resumo:
In the picture-word interference task, naming responses are facilitated when a distractor word is orthographically and phonologically related to the depicted object as compared to an unrelated word. We used event-related functional magnetic resonance imaging (fMRI) to investigate the cerebral hemodynamic responses associated with this priming effect. Serial (or independent-stage) and interactive models of word production that explicitly account for picture-word interference effects assume that the locus of the effect is at the level of retrieving phonological codes, a role attributed recently to the left posterior superior temporal cortex (Wernicke's area). This assumption was tested by randomly presenting participants with trials from orthographically related and unrelated distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt naming responses occurred in the absence of scanner noise, allowing reaction time data to be recorded. Analysis of this data confirmed the priming effect. Analysis of the fMRI data revealed blood oxygen level-dependent signal decreases in Wernicke's area and the right anterior temporal cortex, whereas signal increases were observed in the anterior cingulate, the right orbitomedial prefrontal, somatosensory, and inferior parietal cortices, and the occipital lobe. The results are interpreted as supporting the locus for the facilitation effect as assumed by both classes of theoretical model of word production. In addition, our results raise the possibilities that, counterintuitively, picture-word interference might be increased by the presentation of orthographically related distractors, due to competition introduced by activation of phonologically related word forms, and that this competition requires inhibitory processes to be resolved. The priming effect is therefore viewed as being sufficient to offset the increased interference. We conclude that information from functional imaging studies might be useful for constraining theoretical models of word production.