992 resultados para wind forcing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind stress is the most important ocean forcing for driving tropical surface currents. Stress can be estimated from scatterometer-reported wind measurements at 10 m that have been extrapolated to the surface, assuming a neutrally stable atmosphere and no surface current. Scatterometer calibration is designed to account for the assumption of neutral stability; however, the assumption of a particular sea state and negligible current often introduces an error in wind stress estimations. Since the fundamental scatterometer measurement is of the surface radar backscatter (sigma-0) which is related to surface roughness and, thus, stress, we develop a method to estimate wind stress directly from the scatterometer measurements of sigma-0 and their associated azimuth angle and incidence angle using a neural network approach. We compare the results with in situ estimations and observe that the wind stress estimations from this approach are more accurate compared with those obtained from the conventional estimations using 10-m-height wind measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diurnal cycle is an important mode of sea surface temperature (SST) variability in tropical oceans, influencing air-sea interaction and climate variability. Upper ocean mixing mechanisms are significant at diurnal time scales controlling the intraseasonal variability (ISV) of SST. Sensitivity experiments using an Ocean General Circulation Model (OGCM) for the summer monsoon of the year 2007 show that incorporation of diurnal cycle in the model atmospheric forcings improves the SST simulation at both intraseasonal and shorter time scales in the Bay of Bengal (BoB). The increase in SST-ISV amplitudes with diurnal forcing is approximate to 0.05 degrees C in the southern bay while it is approximate to 0.02 degrees C in the northern bay. Increased intraseasonal warming with diurnal forcing results from the increase in mixed layer heat gain from insolation, due to shoaling of the daytime mixed layer. Amplified intraseasonal cooling is dominantly controlled by the strengthening of subsurface processes owing to the nocturnal deepening of mixed layer. In the southern bay, intraseasonal variability is mainly determined by the diurnal cycle in insolation, while in the northern bay, diurnal cycle in insolation and winds have comparable contributions. Temperature inversions (TI) develop in the northern bay in the absence of diurnal variability in wind stress. In the northern bay, SST-ISV amplification is not as large as that in the southern bay due to the weaker diurnal variability of mixed layer depth (MLD) limited by salinity stratification. Diurnal variability of model MLD is not sufficient to create large modifications in mixed layer heat budget and SST-ISV in the northern bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results are given of monthly net phytoplankton and zooplankton sampling from a 10 m depth in shelf, slope, and Gulf Stream eddy water along a transect running southeastward from Ambrose Light, New York, in 1976, 1977, and early 1978. Plankton abundance and temperature at 10 m and sea surface salinity at each station are listed. The effects of atmospheric forcing and Gulf Stream eddies on plankton distribution and abundance arc discussed. The frequency of Gulf Stream eddy passage through the New York Bight corresponded with the frequency of tropical-subtropical net phytoplankton in the samples. Gulf Stream eddies injected tropical-subtropical zooplankton onto the shelf and removed shelfwater and its entrained zooplankton. Wind-induced offshore Ekman transport corresponded generally with the unusual timing of two net phytoplankton maxima. Midsummer net phytoplankton maxima were recorded following the passage of Hurricane Belle (August 1976) and a cold front (July 1977). Tropical-subtropical zooplankton which had been injected onto the outer shelf by Gulf Stream eddies were moved to the inner shelf by a wind-induced current moving up the Hudson Shelf Valley. (PDF file contains 47 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distinct, 1- to 2-cm-thick flood deposit found in Santa Barbara Basin with a varve-date of 1605 AD ± 5 years testifies to an intensity of precipitation that remains unmatched for later periods when historical or instrumental records can be compared against the varve record. The 1605 AD ± 5 event correlates well with Enzel's (1992) finding of a Silver Lake playa perennial lake at the terminus of the Mojave River (carbon-14-dated 1560 AD ± 90 years), in relative proximity to the rainfall catchment area draining into Santa Barbara Basin. According to Enzel, such a persistent flooding of the Silver Lake playa occurred only once during the last 3,500 years and required a sequence of floods, each comparable in magnitude to the largest floods in the modern record. To gain confidence in dating of the 1605 AD ± 5 event, we compare Southern California's sedimentary evidence against historical reports and multi-proxy time-series that indicate unusual climatic events or are sensitive to changes in large-scale atmospheric circulation patterns. The emerging pattern supports previous suggestions that the first decade of the 17th century was marked by a rapid cooling of the Northern Hemisphere, with some indications for global coverage. A burst of volcanism and the occurrence of El Nino seem to have contributed to the severity of the events. The synopsis of the 1605 AD ± 5 years flood deposit in Santa Barbara Basin, the substantial freshwater body at Silver Lake playa, and much additional paleoclimatic, global evidence testifies for an equatorward shift of global wind patterns as the world experienced an interval of rapid, intense, and widespread cooling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ 1] Intraseasonal variability of Indian Ocean sea surface temperature (SST) during boreal winter is investigated by analyzing available data and a suite of solutions to an ocean general circulation model for 1998 - 2004. This period covers the QuikSCAT and Tropical Rainfall Measuring Mission (TRMM) observations. Impacts of the 30 - 90 day and 10 - 30 day atmospheric intraseasonal oscillations (ISOs) are examined separately, with the former dominated by the Madden-Julian Oscillation (MJO) and the latter dominated by convectively coupled Rossby and Kelvin waves. The maximum variation of intraseasonal SST occurs at 10 degrees S - 2 degrees S in the wintertime Intertropical Convergence Zone (ITCZ), where the mixed layer is thin and intraseasonal wind speed reaches its maximum. The observed maximum warming ( cooling) averaged over ( 60 degrees E - 85 degrees E, 10 degrees S - 3 degrees S) is 1.13 degrees C ( - 0.97 degrees C) for the period of interest, with a standard deviation of 0.39 degrees C in winter. This SST change is forced predominantly by the MJO. While the MJO causes a basin-wide cooling ( warming) in the ITCZ region, submonthly ISOs cause a more complex SST structure that propagates southwestward in the western-central basin and southeastward in the eastern ocean. On both the MJO and submonthly timescales, winds are the deterministic factor for the SST variability. Short-wave radiation generally plays a secondary role, and effects of precipitation are negligible. The dominant role of winds results roughly equally from wind speed and stress forcing. Wind speed affects SST by altering turbulent heat fluxes and entrainment cooling. Wind stress affects SST via several local and remote oceanic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Offshore wind turbines supported on monopile foundations are dynamically sensitive because the overall natural frequencies of these structures are close to the different forcing frequencies imposed upon them. The structures are designed for an intended life of 25 to 30 years, but little is known about their long term behaviour. To study their long term behaviour, a series of laboratory tests were conducted in which a scaled model wind turbine supported on a monopile in kaolin clay was subjected to between 32,000 and 172,000 cycles of horizontal loading and the changes in natural frequency and damping of the model were monitored. The experimental results are presented using a non-dimensional framework based on an interpretation of the governing mechanics. The change in natural frequency was found to be strongly dependent on the shear strain level in the soil next to the pile. Practical guidance for choosing the diameter of monopile is suggested based on element test results using the concept of volumetric threshold shear strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-enclosed bays in upwelling regions are exposed to forcing related to winds, currents and buoyancy over the shelf. The influence of this external forcing is moderated by factors such as connectivity to the open ocean, shelter by surrounding topography, dimensions of the bay, and freshwater outflows. Such bays, preferred locations for ports, mariculture, marine industry, recreational activities and coastal settlement, present a range of characteristics, understanding of which is necessary to their rational management. Observations in such a semi-enclosed bay, the Ria de Vigo in Spain, are used to characterize the influence of upwelling and downwelling pulses on its circulation. In this location, near the northern limit of the Iberian upwelling system, upwelling events dominate during a short summer season and downwelling events the rest of the year. The ria response to the external forcing is central to nutrient supply and resultant plankton productivity that supports its high level of cultured mussel production. Intensive field studies in September 2006 and June 2007 captured a downwelling event and an upwelling event, respectively. Data from eight current profiler moorings and boat-based MiniBat/ADCP surveys provided an unprecedented quasi-synoptic view of the distribution of water masses and circulation patterns in any ria. In the outer ria, circulation was dominated by the introduction of wind-driven alongshore flow from the external continental shelf through the ria entrances and its interaction with the topography. In the middle ria, circulation was primarily related to the upwelling/downwelling cycle, with a cool, salty and dense lower layer penetrating to the inner ria during upwelling over the shelf. A warmer, lower salinity and less dense surface layer of coastal waters flowed inward during downwelling. Without external forcing, the inner ria responded primarily to tides and buoyancy changes related to land runoff. Under both upwelling and downwelling conditions, the flushing of the ria involved shelf responses to wind pulses. Their persistence for a few days was sufficient to allow waters from the continental shelf to penetrate the innermost ria. Longer term observations supported by numerical modeling are required to confirm the generality of such flushing events in the ria and determine their typical frequency, while comparative studies should explore how these scenarios fit into the range of conditions experienced in other semi-enclosed bays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study on the vertical structure of horizontal wind variability in the surface boundary layer over Sriharikota. Based on clock wind speed and direction measuring meteorological tower facility from seven levels in the 100 m layer. The study on wind variability and elliptical approximation of wind hodographs investigated for this tropical coastal station established that Sriharikota is of meso-scale weather entity. Wind variability ratio increases from lower levels to upper levels. In South West monsoon months the station is of high ratio values and it gets affected with meso-scale weather features like thunderstorms. Average total shears are observed greater values than scalar shears. Scalar shears are high in the lowest shear levels compared to upper levels. Semi diurnal types of oscillation in average total shears are found in south west monsoon months. During cyclonic storm passage it is observed that there can be significant difference in mean wind speed from 10 m to 100 m level, but it is not so for peak wind speeds. The variations in wind variability ratio in different months is clearly depicted its strong link to define meso-scale or synoptic –scale forcing domination for this station. Meso-scale forcing is characterized by diurnal wind variability and synoptic- scale forcing by interdiurnal wind variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study on upper ocean responses to atmospheric forcing (associated with cyclone passage) in North Indian Ocean revealed significant variability between AS and BoB. The analysis of cyclone frequency during 1947 to 2006 exhibited lesser frequency of cyclones in AS than that of BoB. The analysis also revealed significant reduction in cyclone frequency after the year 1976 with substantial reduction during monsoon season. The long term SST data at selected points in AS and BoB could not reveal any relation with reduction in cyclone frequency. However the SLP at same locations exhibited considerable increase during mid 1970’s, which could have contributed to the observed reduction in cyclone frequency after the year 1976.The response in waves during cyclone passage exhibited significant asymmetry on either side of the track in AS and BoB and the response is observed at 100’s of kilometers away from the track. The significant clockwise rotation in wave direction is observed on the right side of the track starting from near the track to far away locations, which existed for a longer duration. However, the anticlockwise rotation in wave direction is observed over a shorter distance on the left side of the track and dissipated immediately.Inertial oscillation is observed in surface current and in the mixed layer temperature associated with cyclone passage, which revealed the role of relative location(s) on either side of the track. The inertial peak closer to the local inertial period indicates maximum transfer of energy during the cyclone passage in both AS and BoB. The absence of strong inertial oscillation even with clockwise rotation in surface current and wind indicates the dominant role of duration of strong wind in generating inertial oscillation.The oceanic response associated with cyclone passage reveal the variable response(s) which depends on cyclone intensity, the proximity to track and cyclone translation speed. It is observed that resonance with wind generates higher response in surface current, wave and SST on the right side of the track and it lasts for a longer duration. The maximum oceanic response is observed at a few kilometers away on right side of the track. However lesser rightward bias in the location of maximum cooling is observed for cyclones with low cyclone translation speed. The response on the left side of the track is less and is limited over a shorter distance and dissipates immediately. It is observed that the ocean response, in general, increases with intensity of cyclones. However the differential cooling produced by the same intensity cyclones in AS and in BoB indicates the dominant role of low cyclone translation speed in oceanic response.The surface cooling exhibited strikingly differential responses between AS and BoB. The TMI-SST and buoy observations exhibited significant cooling for a longer duration in AS compared to that of BoB. The spatial extent of cooling is also much higher in AS than that of BoB. The wide spread cooling associated with cyclone passage in AS indicates the dominant role of thermal structure in oceanic response in AS than that of BoB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Practically all extant work on flows over obstacle arrays, whether laboratory experiments or numerical modelling, is for cases where the oncoming wind is normal to salient faces of the obstacles. In the field, however, this is rarely the case. Here, simulations of flows at various directions over arrays of cubes representing typical urban canopy regions are presented and discussed. The computations are of both direct numerical simulation and large-eddy simulation type. Attention is concentrated on the differences in the mean flow within the canopy region arising from the different wind directions and the consequent effects on global properties such as the total surface drag, which can change very significantly—by up to a factor of three in some circumstances. It is shown that for a given Reynolds number the typical viscous forces are generally a rather larger fraction of the pressure forces (principally the drag) for non-normal than for normal wind directions and that, dependent on the surface morphology, the average flow direction deep within the canopy can be largely independent of the oncoming wind direction. Even for regular arrays of regular obstacles, a wind direction not normal to the obstacle faces can in general generate a lateral lift force (in the direction normal to the oncoming flow). The results demonstrate this and it is shown how computations in a finite domain with the oncoming flow generated by an appropriate forcing term (e.g. a pressure gradient) then lead inevitably to an oncoming wind direction aloft that is not aligned with the forcing term vector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes the turbulent processes in the upper ocean boundary layer forced by a constant surface stress in the absence of the Coriolis force using large-eddy simulation. The boundary layer that develops has a two-layer structure, a well-mixed layer above a stratified shear layer. The depth of the mixed layer is approximately constant, whereas the depth of the shear layer increases with time. The turbulent momentum flux varies approximately linearly from the surface to the base of the shear layer. There is a maximum in the production of turbulence through shear at the base of the mixed layer. The magnitude of the shear production increases with time. The increase is mainly a result of the increase in the turbulent momentum flux at the base of the mixed layer due to the increase in the depth of the boundary layer. The length scale for the shear turbulence is the boundary layer depth. A simple scaling is proposed for the magnitude of the shear production that depends on the surface forcing and the average mixed layer current. The scaling can be interpreted in terms of the divergence of a mean kinetic energy flux. A simple bulk model of the boundary layer is developed to obtain equations describing the variation of the mixed layer and boundary layer depths with time. The model shows that the rate at which the boundary layer deepens does not depend on the stratification of the thermocline. The bulk model shows that the variation in the mixed layer depth is small as long as the surface buoyancy flux is small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dispersion of a point-source release of a passive scalar in a regular array of cubical, urban-like, obstacles is investigated by means of direct numerical simulations. The simulations are conducted under conditions of neutral stability and fully rough turbulent flow, at a roughness Reynolds number of Reτ = 500. The Navier–Stokes and scalar equations are integrated assuming a constant rate release from a point source close to the ground within the array. We focus on short-range dispersion, when most of the material is still within the building canopy. Mean and fluctuating concentrations are computed for three different pressure gradient directions (0◦ , 30◦ , 45◦). The results agree well with available experimental data measured in a water channel for a flow angle of 0◦ . Profiles of mean concentration and the three-dimensional structure of the dispersion pattern are compared for the different forcing angles. A number of processes affecting the plume structure are identified and discussed, including: (i) advection or channelling of scalar down ‘streets’, (ii) lateral dispersion by turbulent fluctuations and topological dispersion induced by dividing streamlines around buildings, (iii) skewing of the plume due to flow turning with height, (iv) detrainment by turbulent dispersion or mean recirculation, (v) entrainment and release of scalar in building wakes, giving rise to ‘secondary sources’, (vi) plume meandering due to unsteady turbulent fluctuations. Finally, results on relative concentration fluctuations are presented and compared with the literature for point source dispersion over flat terrain and urban arrays. Keywords Direct numerical simulation · Dispersion modelling · Urban array

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many climate forcings the dominant response of the extratropical circulation is a latitudinal shift of the tropospheric mid-latitude jets. The magnitude of this response appears to depend on climatological jet latitude in general circulation models (GCMs): lower latitude jets exhibit a larger shift. The reason for this latitude dependence is investigated for a particular forcing, heating of the equatorial stratosphere, which shifts the jet poleward. Spin-up ensembles with a simplified GCM are used to examine the evolution of the response for five different jet structures. These differ in the latitude of the eddy-driven jet, but have similar sub-tropical zonal winds. It is found that lower latitude jets exhibit a larger response due to stronger tropospheric eddy-mean flow feedbacks. A dominant feedback responsible for enhancing the poleward shift is an enhanced equatorward refraction of the eddies, resulting in an increased momentum flux, poleward of the low latitude critical line. The sensitivity of feedback strength to jet structure is associated with differences in the coherence of this behaviour across the spectrum of eddy phase speeds. In the configurations used, the higher latitude jets have a wider range of critical latitude locations. This reduces the coherence of the momentum flux anomalies associated with different phase speeds, with low phase speeds opposing the effect of high phase speeds. This suggests that, for a given sub-tropical zonal wind strength, the latitude of the eddy driven jet affects the feedback through its influence on the width of the region of westerly winds and the range of critical latitudes on the equatorward flank of the jet.