953 resultados para white-beam synchrotron radiation topography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the delivery and portal imaging of one square-field and one conformal radiotherapy treatment was simulated using the Monte Carlo codes BEAMnrc and DOSXYZnrc. The treatment fields were delivered to a humanoid phantom from different angles by a 6 MV photon beam linear accelerator, with an amorphous-silicon electronic portal imaging device (a-Si EPID) used to provide images of the phantom generated by each field. The virtual phantom preparation code CTCombine was used to combine a computed-tomography-derived model of the irradiated phantom with a simple, rectilinear model of the a-Si EPID, at each beam angle used in the treatment. Comparison of the resulting experimental and simulated a-Si EPID images showed good agreement, within \[gamma](3%, 3 mm), indicating that this method may be useful in providing accurate Monte Carlo predictions of clinical a-Si EPID images, for use in the verification of complex radiotherapy treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of a new microfurnace for use for Laue diffraction studies of solid-state transformations is described. The furnace operates in the temperature range 298-573 K with a thermal stability of about ± 0.1 K. The potential of the synchrotron-radiation Laue diffraction technique for studies of structural phase transitions is demonstrated. Experimental data on phase transitions in caesium periodate, potassium tetrachlorozincate and pentaerythritol are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of an X-ray reflectivity study of thick AlAs-AlGaAs and thin GeSi-Ge multilayers grown using metal-organic vapour-phase epitaxy and ion-beam sputtering deposition techniques, respectively, are presented. Asymmetry in interfaces is observed in both of these semiconductor multilayers. It is also observed that although the Si-on-Ge interface is sharp, an Si0.4Ge0.6 alloy is formed at the Ge-on-Si interface. In the case of the III-V semiconductor, the AlAs-on-AlGaAs interface shows much greater roughness than that observed in the AlGaAs-on-AlAs interface. For thin multilayers it is demonstrated that the compositional profile as a function of depth can be obtained directly from the X-ray reflectivity data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have grown an atom-thin, ordered, two-dimensional multi-phase film in situ through germanium molecular beam epitaxy using a gold (111) surface as a substrate. Its growth is similar to the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in scanning tunneling microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced density functional theory calculations we can identify it as a root 3 x root 3 R(30 degrees) germanene layer in conjunction with a root 7 x root 7 R(19.1 degrees) Au(111) supercell, presenting compelling evidence of the synthesis of the germanium-based cousin of graphene on gold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study on the nucleation and initial growth kinetics of InN on GaN, especially their dependence on metalorganic chemical vapour deposition conditions. It is found that the density and size of separated InN nano-scale islands can be adjusted and well controlled by changing the V/III ratio and growth temperature. InN nuclei density increases for several orders of magnitude with decreasing growth temperature between 525 and 375 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters less than 100 nm, whereas at elevated temperatures the InN islands grow larger and become well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. The temperature dependence of InN island density gives two activation energies of InN nucleation behaviour, which is attributed to two different kinetic processes related to In adatom surface diffusion and desorption, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poolton, Nigel; Towlson, B.M.; Hamilton, B.; Evans, D.A., (2006) 'New instrumentation for micro-imaging X-ray absorption spectroscopy using optical detection methods', Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 246(2) pp.445-451 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Langstaff, David; Bushell, A.; Chase, T.; Evans, D.A., (2005) 'A fully integrated multi-channel detector for electron spectroscopy', Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 238 pp.219-223 RAE2008 Synchrotron Radiation in Materials Science ? Proceedings of the 4th Conference on Synchrotron Radiation in Materials Science 4th Conference on Synchrotron Radiation in Materials Science

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-intensity, high-resolution x-ray source at the European Synchrotron Radiation Facility (ESRF) has been used in x-ray diffraction (XRD) experiments to detect intermetallic compounds (IMCs) in lead-free solder bumps. The IMCs found in 95.5Sn3.8Ag0.7Cu solder bumps on Cu pads with electroplated-nickel immersion-gold (ENIG) surface finish are consistent with results based on traditional destructive methods. Moreover, after positive identification of the IMCs from the diffraction data, spatial distribution plots over the entire bump were obtained. These spatial distributions for selected intermetallic phases display the layer thickness and confirm the locations of the IMCs. For isothermally aged solder samples, results have shown that much thicker layers of IMCs have grown from the pad interface into the bulk of the solder. Additionally, the XRD technique has also been used in a temperature-resolved mode to observe the formation of IMCs, in situ, during the solidification of the solder joint. The results demonstrate that the XRD technique is very attractive as it allows for nondestructive investigations to be performed on expensive state-of-the-art electronic components, thereby allowing new, lead-free materials to be fully characterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoionization cross section calculations on the halogen-like ions; Kr + and Xe + have been performed for a photon energy range from each ion threshold to 15 eV, using large-scale close-coupling calculations within the Dirac--Coulomb R -matrix approximation. The results from our theoretical work are compared with recent measurements made at the ASTRID merged-beam set-up at the University of Aarhus in Denmark and from the Fourier transform ion cyclotron resonance trap method at the SOLEIL synchrotron radiation facility in Saint-Aubin, France Bizau et al (2011 J. Phys. B: At. Mol. Opt. Phys. 44 055205) and the advanced light source M{ü}ller (2012 private communication), Aguliar et al (2012 J. Phys.: Conf. Ser . at press). For each of these complex ions our theoretical cross section results over the photon energy range investigated are seen to be in excellent agreement with experiment. Resonance energy positions and quantum defects of the prominent Rydberg resonances series identified in the spectra are compared with experiment for these complex halogen-like ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and theoretical results are reported for photoionization of Ta-like (W+) tungsten ions. Absolute cross sections were measured in the energy range 16–245 eV employing the photon–ion merged-beam setup at the advanced light source in Berkeley. Detailed photon-energy scans at 100 meV bandwidth were performed in the 16–108 eV range. In addition, the cross section was scanned at 50 meV resolution in regions where fine resonance structures could be observed. Theoretical results were obtained from a Dirac–Coulomb R-matrix approach. Photoionization cross section calculations were performed for singly ionized atomic tungsten ions in their 5s25p65d4(5D)6s 6Dj.  J = 1/2, ground level and the associated excited metastable levels with J = 3/2, 5/2, 7/2 and 9/2. Since the ion beams used in the experiments must be expected to contain long-lived excited states also from excited configurations, additional cross-section calculations were performed for the second-lowest term, 5d56Sj, J = 5/2, and for the 4F term, 5d36s2 4Fj, with J = 3/2, 5/2, 7/2 and 9/2. Given the complexity of the electronic structure of W+ the calculations reproduce the main features of the experimental cross section quite well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absolute cross-section measurements for valence-shell photoionization of Ar + ions are reported for photon energies ranging from 27.4 eV to 60.0 eV. The data, taken by merging beams of ions and synchrotron radiation at a photon energy resolution of 10 meV, indicate that the primary ion beam was a statistically weighted mixture of the 2P o3/2 ground state and the 2P o1/2 metastable state of Ar +. Photoionization of this Cell-like ion is characterized by multiple Rydberg series of autoionizing resonances superimposed on a direct photoionization continuum. Observed resonance lineshapes indicate interference between indirect and direct photoionization channels. Resonance features are spectroscopically assigned and their energies and quantum defects are tabulated. The measurements are satisfactorily reproduced by theoretical calculations based on an intermediate coupling semi-relativistic Breit-Pauli approximation.