988 resultados para wheelchair accessible
Resumo:
In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level.
Resumo:
We extended 'littleBits' electronic components by attaching them to a larger base that was designed to help make them easier to pick up and handle, and easier to assemble into circuits for people with learning disabilities. A pilot study with a group of students with learning disabilities was very positive. There were fewer difficulties in assembling the components into circuits, and problems such as attempting to connect them the wrong way round or the wrong way up were eliminated completely.
Resumo:
The “littleBits go LARGE" project extends littleBits electronic modules, an existing product that is aimed at simplifying electronics for a wide range of audiences. In this project we augment the littleBits modules to make them more accessible to people with learning disabilities. We will demonstrate how we have made the modules easier to handle and manipulate physically, and how we are augmenting the design of the modules to make their functions more obvious and understandable.
Resumo:
This work was originated through the results of the analysis of the services for the needs of people with disabilities that were permitted by the physical space of two schools of the municipality of Natal/RN. The general objective/goal was to subsidize the elaboration of alternatives for the planning of environments that could be used by any person. The study used the empirical research through the adoption of a multimethod approach including: (i) technical visits oriented by the NBR 9050, (ii) contact with users that have reduced mobility (visually impaired and wheelchair or crutch users) through escorted travels and interviews, and (iii) interview with school managers. The evidence from the research, even though with significant development of laws that guarantee people with disabilities their right to citizenship, the physical environment of our schools still present with many obstacles that prevent the mobility of people with disabilities which proves their lack of readiness to accommodate them. Therefore, the actions taken to address the accessibility has been the adoption of temporary solutions that makes the adaptation more difficult, adds obstacles and reinforces the undesirable segregation, however still very present in our society. Finally, there is the indication that in order to achieve the spatial configuration that promotes social contact and integration in between the persons with different physical status, it is necessary to completely comprehend the activities developed in each space, from the conception of the equipment to the individual learning needs, having in mind creating environments that stimulates the execution of the tasks in an independent manner without the assistance of others. The inclusion regarding attention to accessibility in the decision making process, directed to the arquitectural and urban project, would decrease the constant need to redevelop and adapt spaces, and should be definitely incorporated as an important component in the production of space
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Robust controller design of a wheelchair mobile via LMI approach to SPR systems with feedback output
Resumo:
This article discusses the design of robust controller applied to Wheelchair Furniture via Linear Matrix Inequalities (LMI), to obtain Strictly Positive Real (SPR) systems. The contributions of this work were the choice of a mathematical model for wheelchair: mobile with uncertainty about the position of the center of gravity (CG), the decoupling of the kinematic and dynamical systems, linearization of the models, the headquarters building of parametric uncertainties, the proposal of the control loop and control law with a specified decay rate.